所属成套资源:高一数学下学期期末必考重点题型技法突破(人教A版必修第二册)
专题4 立体几何-高一数学下学期期末必考重点题型技法突破(人教A版必修第二册)
展开这是一份专题4 立体几何-高一数学下学期期末必考重点题型技法突破(人教A版必修第二册),文件包含专题4立体几何-高一数学下学期期末必考重点题型技法突破人教A版必修第二册解析版docx、专题4立体几何-高一数学下学期期末必考重点题型技法突破人教A版必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
立体几何
★★★★★★期末导航★★★★★★
★★★★★★知识回顾★★★★★★
一、空间几何体的结构特征
1.多面体及其结构特征
(1)棱柱:①有两个平面(底面)互相平行;②其余各面都是平行四边形;③每相邻两个平行四边形的公共边互相平行.
(2)棱锥:①有一个面(底面)是多边形;
②其余各面(侧面)是有一个公共顶点的三角形.
(3)棱台:①上、下底面互相平行,且是相似图形;②各侧棱延长线相交于一点.
2.旋转体及其结构特征
(1)圆柱:①圆柱的轴垂直于底面;②圆柱的轴截面是矩形;③圆柱的所有母线相互平行且相等,且都与圆柱的轴平行;④圆柱的母线垂直于底面.
(2)圆锥:①圆锥的轴垂直于底面;②圆锥的轴截面为等腰三角形;③圆锥的顶点与底面圆周上任一点的连线都是圆锥的母线,圆锥的母线有无数条;④圆锥的底面是一个圆面.
(3)圆台:①圆台的上、下底面是两个半径不等的圆面;②圆台两底面圆所在平面互相平行且和轴垂直;③圆台有无数条母线;④圆台的母线延长线交于一点.
二、空间几何体的直观图
1.斜二测画法中“斜”和“二测”
“斜”是指在已知图形的xOy平面内与x轴垂直的线段,在直观图中均与x′轴成45°或135°;
“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变;平行于y′轴的线段长度变为原来的一半.
2.斜二测画法中的建系原则
在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线或图形的对称直线为坐标轴,图形的对称点为原点或利用原有互相垂直的直线为坐标轴等.
三、空间几何体的表面积和体积
1.多面体的表面积
各个面的面积之和,也就是展开图的面积.
2.旋转体的表面积
圆柱:S=2πr2+2πrl=2πr(r+l).
圆锥:S=πr2+πrl=πr(r+l).
圆台:S=π(r′2+r2+r′l+rl).
球:S=4πR2.
3.柱体、锥体、台体的体积公式
(1)柱体的体积公式:
V柱体=Sh(S底面面积,h为高).
(2)锥体的体积公式V锥体=Sh(S底面面积,h为高).
(3)台体的体积公式
V台体=(S++S′)h(S′,S分别为上、下底面面积,h为高).
(4)球的体积公式V=πR3.
四、空间点、线、面之间的位置关系
1.平面的基本性质
四个基本事实及其作用
基本事实1:过不在一条直线上的三个点,有且只有一个平面.
作用:①可用来确定一个平面;②证明点线共面.
基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在此平面内.
作用:可用来证明点、直线在平面内.
基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点.
基本事实4:平行于同一条直线的两条直线平行.
作用:判断空间两条直线平行的依据.
2.空间中两直线的位置关系
空间中两直线的位置关系
3.空间中直线与平面、平面与平面的位置关系
(1)直线与平面的位置关系有相交、平行、在平面内三种情况.
(2)平面与平面的位置关系有平行、相交两种情况.
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”).
2.平面与平面平行
(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”).
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
六、直线、平面垂直的判定及其性质
1.直线与平面垂直
(1)直线和平面垂直的定义:
直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.
(2)异面直线所成的角:
定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(3)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
(4)性质定理:垂直于同一个平面的两条直线平行.
2.平面与平面垂直
(1)平面和平面垂直的定义:
两个平面相交,若所成的二面角是直二面角,则这两个平面垂直.
(2)判定定理:一个平面过另一个平面的垂线,则这两个平面互相垂直.
(3)性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面.
★★★★★★掌握题型★★★★★★
考点一 几何体的表面积与体积
【例1】如图所示(单位:cm),求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积.
【解析】由题意知,所求几何体的表面积由三部分组成:
圆台下底面、侧面和一半球面,
S半球=8π cm2,S圆台侧=35π cm2,S圆台底=25π cm2,
故所求几何体的表面积为68π cm2.
由V圆台=×[π×22++π×52]×4=52π(cm3),V半球=π×23×=π(cm3),所以所求几何体的体积为V圆台-V半球=52π-π=π(cm3).
【方法总结】1.空间几何体的表面积求法
(1)多面体的表面积是各个面的面积之和,组合体表面积注意衔接部分的处理.
(2)旋转体的表面积问题注意其侧面展开图的应用.
2.空间几何体体积问题常见类型
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
【跟踪训练】如图所示,已知直三棱柱ABC-A1B1C1的所有棱长均为1,则三棱锥B1-ABC1的体积为( )
A. B.
C. D.
考点二 空间中的平行关系
【例2】如图所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由.
【反思感悟】
1.判断线面平行的两种常用方法
面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:
(1)利用线面平行的判定定理.
(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.
2.判断面面平行的常用方法
利用面面平行的判定定理.
【跟踪训练】如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M是EA的中点,N是EC的中点,求证:平面DMN∥平面ABC.
考点三 空间中的垂直关系
【例3】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(2)BE∥平面PAD;
(3)平面BEF⊥平面PCD.
【方法技巧】
1.判定线面垂直的方法
(1)线面垂直定义.
(2)线面垂直判定定理.
(3)平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α).
(4)面面垂直性质(α⊥β,α∩β=l,a⊂β,a⊥l⇒a⊥α).
2.判定面面垂直的方法
(1)面面垂直的定义.
(2)面面垂直的判定定理.
【跟踪训练】如图所示,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(1)求证:AC⊥平面BCE;
(2)求证:AD⊥AE.
考点四 空间角的求法
【例4】如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角的大小;
(2)AO与平面ABCD所成角的正切值;
(3)平面AOB与平面AOC所成角的大小.
【方法技巧】(1)求异面直线所成的角常用平移转化法(转化为相交直线的夹角).
(2)求直线与平面所成的角常用射影转化法(即作垂线、找射影).
(3)二面角的平面角的作法常有三种:①定义法;②三垂线法;③垂面法.
【跟踪训练】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AB∥CD,AB⊥AD,且CD=2AB.
(1)若AB=AD,直线PB与CD所成的角为45°,求二面角P-CD-B的大小;
(2)若E为线段PC上一点,试确定点E的位置,使得平面EBD⊥平面ABCD,并说明理由.
★★★★★★题组训练★★★★★★
一、单选题
1.下列说法正确的是( )
A.三点可以确定一个平面 B.一条直线和一个点可以确定一个平面
C.四边形一定是平面图形 D.两条相交直线可以确定一个平面
2.中和殿是故宫外朝三大殿之一,位于紫禁城太和殿与保和殿之间,中和殿建筑的亮点是屋顶为单檐四角攒(cuán)尖顶,体现天圆地方的理念,其屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧棱长为,侧面与底面所成的锐二面角为,这个角接近30°,若取,则下列结论正确的是( )
A.正四棱锥的底面边长为48m
B.正四棱锥的高为4m
C.正四棱锥的体积为
D.正四棱锥的侧面积为
3.下列命题正确的是( )
A.棱柱的每个面都是平行四边形 B.一个棱柱至少有五个面
C.棱柱有且只有两个面互相平行 D.棱柱的侧面都是矩形
4.如图,在正方体中,E为的中点,则下列与直线CE垂直的是( )
A.直线AC B.直线 C.直线 D.直线
5.如图,已知梯形,.,沿着对角线折叠使得点B,点C的距离为,此时二面角的平面角为( )
A. B. C. D.
6.如图所示,正方体的棱长为,以其所有面的中心为顶点的多面体为正八面体,那么该正八面体的内切球表面积为( )
A. B. C. D.
7.某圆锥母线长为2,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )
A.2 B. C. D.1
8.在如图所示的棱长为20的正方体中,点为的中点,点在侧面上,且到的距离为6,到的距离为5,则过点且与垂直的正方体截面的形状是( )
A.三角形 B.四边形 C.五边形 D.六边形
二、多选题
9.已知直线l和不重合的两个平面,,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10.(多选)下列说法中正确的是( )
A.若直线l与平面α不平行,则l与α相交
B.直线l在平面外是指直线和平面平行
C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交
D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交
11.如图一张矩形白纸ABCD,,,E,F分别为AD,BC的中点,现分别将,沿BE,DF折起,且A,C在平面BFDE的同侧,下列命题正确的是( )
A.当平面平面CDF时,
B.当平面平面CDF时,平面BFDE
C.当A,C重合于点P时,
D.当A,C重合于点P时,三棱锥外接球的表面积为150.
12.如图,正方体的棱长为3,线段上有两个动点,且,则当,移动时,下列结论正确的是( )
A.平面
B.四面体的体积不为定值
C.三棱锥的体积为定值
D.四面体的体积为定值
三、填空题
13.过直线外一点有_________条直线与该直线垂直.
14.一圆锥高为2,底面半径为1,则它的侧面积为___________.
15.如图,若平行四边形是用斜二测画法画出的水平放置的平面图形的直观图,已知,,平行四边形的面积为,则原平面图形中的长度为___________.
16.如图,过球的一条半径的中点,作垂直于该半径的平面,所得截面圆的面积与球的表面积之比为________.
四、解答题
17.如图所示,正方体的棱长为,过顶点、、截下一个三棱锥.
(1)求剩余部分的体积;
(2)求三棱锥的高.
18.如图,在正方体中,为的中点,.求证:
(1)平面;
(2)平面.
19.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.
(1)证明:平面PAB⊥平面PAC;
(2)设DO=,圆锥的侧面积为,求三棱锥P−ABC的体积.
20.如图,三棱柱的侧棱与底面垂直,,点是的中点.
(1)求证;
(2)求证:平面.
21.在如图所示的几何体中,四边形为直角梯形,,,.
(1)证明:平面平面.
(2)若,分别是,的中点,证明:平面.
22.如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为1的等边三角形,点在棱上,,且二面角
相关试卷
这是一份专题6 概率-高一数学下学期期末必考重点题型技法突破(人教版201必修第二册),文件包含专题6概率-高一数学下学期期末必考重点题型技法突破人教版201必修第二册解析版docx、专题6概率-高一数学下学期期末必考重点题型技法突破人教版201必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份专题5 统计-高一数学下学期期末必考重点题型技法突破(人教A版选择性必修第二册),文件包含专题5统计-高一数学下学期期末必考重点题型技法突破人教A版选择性必修第二册解析版docx、专题5统计-高一数学下学期期末必考重点题型技法突破人教A版选择性必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份专题3 复数-高一数学下学期期末必考重点题型技法突破(人教A版必修第二册),文件包含专题3复数-高一数学下学期期末必考重点题型技法突破人教A版必修第二册解析版docx、专题3复数-高一数学下学期期末必考重点题型技法突破人教A版必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。