数学(新高考Ⅰ卷A卷)2023年高考第二次模拟考试卷
展开2023年高考数学第二次模拟考试卷
高三数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
一、单选题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。全部选对的得5分,选对但不全的得2分,有选错的得0分。
1.设集合,则( )
A. B. C. D.
2.已知复数,则z在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
4.命题:“是的充分不必要条件”,命题:“是的充分不必要条件”,下列为真命题的是
A. B. C. D.
5.若双曲线(a>0,b>0)的离心率为2,则其两条渐近线所成的锐角为( )
A. B. C. D.
6.在中,,,,一只小蚂蚁从的内切圆的圆心处开始随机爬行,当蚂蚁(在三角形内部)与各边距离不低于1个单位时其行动是安全的,则这只小蚂蚁在内任意行动时安全的概率是( )
A. B. C. D.
7.已知各项均为正数的数列满足,,则数列( )
A.无最小项,无最大项 B.无最小项,有最大项
C.有最小项,无最大项 D.有最小项,有最大项
8.已知函数,若在恒成立,则的取值范围为
A. B. C. D.
二、多选题:
9.已知离散型随机变量服从二项分布,其中,记为奇数的概率为,为偶数的概率为,则下列说法中正确的有( )
A. B.时,
C.时,随着的增大而增大 D.时,随着的增大而减小
10.如图所示,在边长为3的等边三角形中,,且点在以的中点为圆心,为半径的半圆上,若,则( )
A. B.
C.存在最大值 D.的最大值为
11.下列结论中正确的是( )
A.已知,则
B.实数,,满足,的最小值为
C.的最小值为
D.已知,,,则的最大值为2
12.如图,在正方体中,E为棱上的一个动点,F为棱上的一个动点,则直线与平面EFB所成的角可能是( )
A. B. C. D.
第Ⅱ卷
二、填空题:本题共4小题,共20分。
13.已知点,方向上的单位向量为,则向量在上的投影向量为________________.
14.为了监控某种食品的生产包装过程,检验员每天从生产线上随机抽取包食品,并测量其质量(单位:g).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布.假设生产状态正常,记表示每天抽取的k包食品中其质量在之外的包数,若的数学期望,则k的最小值为__________.
附:若随机变量X服从正态分布,则.
15.已知是R上的偶函数,满足,且对恒成立,则实数a的取值范围是_________.
16.已知正项数列满足,则数列的前n项和为___________.
三、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
17.(10分)锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且.
(1)求角C的值;
(2)若,D为AB的中点,求中线CD的范围.
18.已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
19.2016年9月15中秋节(农历八月十五)到来之际,某月饼销售企业进行了一项网上调查,得到如下数据:
| 男 | 女 | 合计 |
喜欢吃月饼人数(单位:万人) | 50 | 40 | 90 |
不喜欢吃月饼人数(单位:万人) | 30 | 20 | 50 |
合计 | 80 | 60 | 140 |
为了进一步了解中秋节期间月饼的消费量,对参与调查的喜欢吃月饼的网友中秋节期间消费月饼的数量进行了抽样调查,得到如下数据:
已知该月饼厂所在销售范围内有30万人,并且该厂每年的销售份额约占市场总量的35%.
(1)若忽略不喜欢月饼者的消费量,请根据上述数据估计:该月饼厂恰好生产多少吨月饼恰好能满足市场需求?
(2)若月饼消费量不低于2500克者视为“月饼超级爱好者”,若按照分层抽样的方法抽取10人进行座谈,再从这10人中随机抽取3人颁发奖品,用表示抽取的“月饼超级爱好者”的人数,求的分布列与期望值.
20.如图,在四棱锥中,底面为正方形,平面,为的中点,交于点,为的重心.
(1)求证:平面;
(2)若,点在线段上,且,求二面角的余弦值.
21.已知椭圆与双曲线的离心率互为倒数,椭圆C的上顶点为M,右顶点为N,O为坐标原点,的面积为1.
(1)求椭圆C的标准方程;
(2)若直线l与曲线相切,与椭圆C交于A,B两点,求的取值范围.
22.已知函数,既存在极大值,又存在极小值.
(1)求实数的取值范围;
(2)当时,,分别为的极大值点和极小值点,若,求实数的取值范围.
数学(新高考Ⅱ卷B卷)-2023年高考第二次模拟考试卷: 这是一份数学(新高考Ⅱ卷B卷)-2023年高考第二次模拟考试卷,文件包含数学新高考Ⅱ卷B卷全解全析docx、数学新高考Ⅱ卷B卷参考答案docx、数学新高考Ⅱ卷B卷考试版A4docx、数学新高考Ⅱ卷B卷答题卡A3版docx等4份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
数学(新高考Ⅱ卷A卷)-2023年高考第二次模拟考试卷: 这是一份数学(新高考Ⅱ卷A卷)-2023年高考第二次模拟考试卷,文件包含数学新高考Ⅱ卷A卷全解全析docx、数学新高考Ⅱ卷A卷参考答案docx、数学新高考Ⅱ卷A卷考试版A4docx、数学新高考Ⅱ卷A卷答题卡A3版docx等4份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
数学(新高考Ⅰ卷B卷)2023年高考第二次模拟考试卷: 这是一份数学(新高考Ⅰ卷B卷)2023年高考第二次模拟考试卷,文件包含数学新高考Ⅰ卷B卷学易金卷2023年高考第二次模拟考试卷全解全析docx、数学新高考Ⅰ卷B卷学易金卷2023年高考第二次模拟考试卷参考答案docx、数学新高考Ⅰ卷B卷学易金卷2023年高考第二次模拟考试卷考试版A4docx、数学新高考Ⅰ卷B卷学易金卷2023年高考第二次模拟考试卷答题卡docx、数学新高考Ⅰ卷B卷学易金卷2023年高考第二次模拟考试卷考试版A3docx等5份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。