年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件+教案

    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件.pptx
    • 教案
      人教版(五四学制)八上数学 20.4 最短路径问题第2课时 教案.doc
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第1页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第2页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第3页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第4页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第5页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第6页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第7页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 课件第8页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 教案第1页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 教案第2页
    人教版(五四学制)八上数学 20.4 最短路径问题第2课时 教案第3页
    还剩10页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版 (五四制)八年级上册20.4 课题学习 最短路径问题精品课件ppt

    展开

    这是一份初中数学人教版 (五四制)八年级上册20.4 课题学习 最短路径问题精品课件ppt,文件包含人教版五四学制八上数学204最短路径问题第2课时教案doc、人教版五四学制八上数学204最短路径问题第2课时课件pptx等2份课件配套教学资源,其中PPT共18页, 欢迎下载使用。
    20.4 最短路径问题
    第二课时
    (1)在平面内,一个图形沿一定方向、移动一定的距离,这样的图形变换称为平移变换(简称平移). 平移不改变图形的形状和大小.(2)三角形三边的数量关系:三角形两边的差小于第三边.
    上节课我们认识了精通数学、物理学的学者海伦,解决了数学史中的经典问题——“将军饮马问题”,但善于观察与思考的海伦在解决“两点(直线同侧)一线” 的最短路径问题时他从另一角度发现了“最大值”的情况,今天我们一起来探究下.
    探究一:运用轴对称解决距离之差最大问题
    活动1
    回顾旧知,引入新知
    探究一:运用轴对称解决距离之差最大问题
    活动2
    整合旧知,探究新知
    例1. 如图, A、B两点在直线l的异侧,在直线l上求作一点C,使|AC-BC|的值最大.
    怎么作图呢?
    【思路点拨】根据轴对称的性质、利用三角形三边的关系,通过比较来说明最值问题是常用的一种方法. 此题的突破点是作点A(或点B)关于直线l的对称点A′(或B′),利用三角形任意两边之差小于第三边,再作直线A′B(AB′)与直线l交于点C.
    解:如图1所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的延长线交l于点C,则点C即为所求.
    探究一:运用轴对称解决距离之差最大问题
    回忆我们是怎么利用轴对称的知识证明“两点(直线同侧)一线型”时AC +BC最小的吗?试类比证明“|AC-BC|最大”的作法是否正确性?
    探究一:运用轴对称解决距离之差最大问题
    活动3
    类比建模,证明新知
    理由:在直线l上任找一点C ′ (异于点C ),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.又在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.
    练习 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系,如图所示. 若P是x轴上使得|PA-PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,请在图中画出点P与点Q.
    【思路点拨】当点P与A、B共线时,即在线段AB的延长线上,点P为直线AB与x轴的交点,则此时P是x轴上使得|PA-PB|的值最大的点,即|PA-PB|=AB. 将点A、B看成y轴同侧有两点:在y轴上求一点Q,使得QA+QB最小
    探究一:运用轴对称解决距离之差最大问题
    如图,点P与点Q即为所求.
    解:⑴延长线段AB,AB与x轴交于点P,则此时P是x轴上使得|PA-PB|的值最大的点,即|PA-PB|=AB;⑵作点A关于x轴的对称点A′,A′B的连线交y轴于点Q,则点Q是y轴上使得QA+QB的值最小的点.
    探究一:运用轴对称解决距离之差最大问题
    常说“遇山开路,遇水搭桥”,生活中的建桥问题与我们所学习的轴对称有什么关系呢?如图,在笔直河岸CD上的点A处需建一座桥,连接河岸EF,且CD∥EF. 显然当桥AB垂直于河岸时,所建的桥长最短.
    探究二:利用平移解决造桥选址问题
    活动1
    结合实际,难点分解
    例2. 如图,A、B两地位于一条河的两岸,现需要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河岸垂直)
    探究二:利用平移解决造桥选址问题
    活动2
    生活中的实际问题
    【思路点拨】需将实际问题抽象成数学问题:从点A到点B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM+BN最短即可.如图1,此时两线段AM、BN应在同一平行方向上,平移MN到A A′,则AA′=MN,AM+NB= A′N+NB,这样问题就转化为:当点N在直线b的什么位置时,A′N+NB最小?
    探究二:利用平移解决造桥选址问题
    如图2,连接A′,B两点的线中,线段 A′B最短,因此,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN,所得路径A→M→N→B是最短的.
    作法:⑴如图2,平移MN到 AA′(或者过点A作A A′垂直于河岸),且使AA′等于河宽.⑵连接B A′与河岸的一边b交于点N.⑶过点N作河岸的垂线交另一条河岸a于点M. 如图所示,则MN为所建的桥的位置.
    探究二:利用平移解决造桥选址问题
    上述作图为什么是最短的?请你想想.
    探究二:利用平移解决造桥选址问题
    活动3
    几何证明
    证明:由平移的性质,得 MN∥AA′, 且MN= AA′, AM=A′N, AM∥A′N,所以A、B两地的距离:AM+MN+BN= AA′+ A′N+ BN = AA′+ A′B.如图2,不妨在直线b上另外任意取一点N′, 若桥的位置建在N′M′处,过点N′作N′M ′⊥a,垂足为M ′,连接AM ′,A′N ′,N ′B.由平行知:AM′=A′N′, AA′= N′M′,则建桥后AB两地的距离为:AM′+M′N′+N′B=A′N′+AA′+N′B=AA′+A′N′+N′B. 在△A′N′B中,∵A′N′+N′B>A′B,∴AA′+A′N′+N′B>AA′+A′B ,即AM′+M′N′+N′B>AM+MN+BN.所以桥建在MN处,AB两地的路程最短.
    练习 如图1,江岸两侧有A、B两个城市,为方便人们从A城经过一条大江到B城的出行,今欲在江上建一座与两岸垂直的大桥,且笔直的江岸互相平行. 应如何选择建桥的位置,才能使从A地到B地的路程最短?
    解: (1)如图2,过点A作AC垂直于河岸,且使AC等于河宽;(2)连接BC与河岸的一边交于点N;(3)过点N作河岸的垂线交另一条河岸于点M.如图2所示,则MN为所建的桥的位置.
    探究二:利用平移解决造桥选址问题
    知识梳理
    本堂课主要知识为两个最值问题:(1)利用轴对称知识解决“线段距离之差最大”问题;(2)利用平移、两点间线段最短解决“造桥选址”问题.
    重难点归纳
    解决线段最值问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.
    (1)“距离之差最大”问题的两种模型:①如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大;②如果两点在一条直线的异侧时,先作其中一点关于直线的对称点,转化为①即可. 通常求最大值或最小值的情况,常取其中一个点的对称点来解决,而用三角形三边的关系来推证说明其作法的正确性.
    重难点归纳
    (2)“造桥选址”问题的关键是把各条线段转化到一条线段上.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.
    点击“随堂训练→名师训练”选择“《最短路径问题(2)》随堂检测 ”

    相关课件

    初中人教版 (五四制)22.3 分式方程优质课件ppt:

    这是一份初中人教版 (五四制)22.3 分式方程优质课件ppt,文件包含人教版五四学制八上数学223分式方程第2课时课件pptx、人教版五四学制八上数学223分式方程第2课时教案doc等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。

    初中人教版 (五四制)22.1 分式试讲课ppt课件:

    这是一份初中人教版 (五四制)22.1 分式试讲课ppt课件,文件包含人教版五四学制八上数学2221分式的乘除第2课时课件pptx、人教版五四学制八上数学2221分式的乘除第2课时教案doc等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。

    初中数学人教版 (五四制)八年级上册21.1 整式的乘法完整版ppt课件:

    这是一份初中数学人教版 (五四制)八年级上册21.1 整式的乘法完整版ppt课件,文件包含人教版五四学制八上数学2114整式的乘法第2课时课件ppt、人教版五四学制八上数学2114整式的乘法第2课时教案doc等2份课件配套教学资源,其中PPT共21页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map