![2023年浙江省杭州市中考数学预测卷二(含答案)第1页](http://www.enxinlong.com/img-preview/2/3/14149230/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年浙江省杭州市中考数学预测卷二(含答案)第2页](http://www.enxinlong.com/img-preview/2/3/14149230/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年浙江省杭州市中考数学预测卷二(含答案)第3页](http://www.enxinlong.com/img-preview/2/3/14149230/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年浙江省杭州市中考数学预测卷二(含答案)
展开这是一份2023年浙江省杭州市中考数学预测卷二(含答案),共17页。试卷主要包含了5≤x<n+0,5-7,75这组数据错误.,5,,00,25等内容,欢迎下载使用。
2023浙江省杭州市中考数学预测卷二
一 、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如果收入10元记作+10元,那么支出10元记作( )
A.元 B.元 C.元 D.元
2.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )
A. B. C. D.
3.若24×22=2m,则m的值为( )
A.8 B.6 C.5 D.2
4.如图,直线m∥n,则∠α为( )
A.70° B. 65° C. 50° D. 40°
5.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是( )
阅读量(单位:本/周) | 0 | 1 | 2 | 3 | 4 |
人数(单位:人) | 1 | 4 | 6 | 2 | 2 |
A.中位数是2 B.平均数是2 C.众数是2 D.极差是2
6.若关于x的分式方程=+5的解为正数,则m的取值范围为( )
A.m<﹣10 B.m≤﹣10
C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6
7.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A. (2,2),(3,2)
B. (2,4),(3,1)
C. (2,2),(3,1)
D. (3,1),(2,2)
8.如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A.B,交函数的图像于点C、D,连接、、、,其中,下列结论:①;②;③,其中正确的是( )
A.①② B.①③ C.②③ D.①
9.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
10.正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是( )
A.线段 B.圆弧 C.折线 D.波浪线
二 、填空题(本大题共6小题,每小题4分,共24分)
11.函数中,自变量的取值范围是_____.
12.﹣2的相反数的值等于 .
13.方程+=1的解是 .
14.如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点,分别以点D,E为圆心,以大于DE长为半径作弧,在∠BAC内两弧相交于点P,作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于 cm.
15.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是 .
16.如图,在中,对角线,BD交于点O,,于点,若AB=2,,则的长为__________________.
三 、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)
17.计算:(﹣)﹣2﹣(4﹣)0+6sin45°﹣.
18.我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体育运动的情况进行抽样调查,在校园内随机抽取男女生各人,调查情况如下表:
是否参加体育运动 | 男生 | 女生 | 总数 |
是 | |||
否 |
对男女生是否参加体育运动的人数绘制了条形统计图如图(1).在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).
根据以上信息解答下列问题:(1)______,______,_______;
(2)将图(1)所示的条形统计图补全;
(3)这次调查中,参加体育运动,且主要运动项目是球类的共有______人;
(4)在这次调查中,共有名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动,我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)
19.如图,B、F、C、E是直线l上的四点,.
(1)求证:;
(2)将沿直线l翻折得到.
①用直尺和圆规在图中作出(保留作图痕迹,不要求写作法);
②连接,则直线与l的位置关系是__________.
20.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.
x(厘米) | 1 | 2 | 4 | 7 | 11 | 12 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.75 | 3.25 | 3.50 |
(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?
(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?
21.如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60° ,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为__________米(结果保留根号).
22.如图,抛物线与轴交于、两点,且,对称轴为直线.
(1)求该抛物线的函数达式;
(2)直线过点且在第一象限与抛物线交于点.当时,求点的坐标;
(3)点在抛物线上与点关于对称轴对称,点是抛物线上一动点,令,当,时,求面积的最大值(可含表示).
23.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.
(1)当α=30°时,求点C′到直线OF的距离.
(2)在图1中,取A′B′的中点P,连结C′P,如图2.
①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.
②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.
答案解析
一 、选择题
1.B.
2.A.
3.B.
4.C.
5.D.
6.D.
7.C.
8.B.
9.C.
10.A.
二 、填空题
11..
12.2.
13.x=﹣2.
14.8.
15.13≤x<15.
16..
三 、解答题
17.
解:原式=9﹣1+6×﹣3
=9﹣1+3﹣3
=8.
18.
解:(1)m=21+19=40,
n=4+6=10,
a=100-45-7.5-7.5=40.
故答案为:40,10,40.
(2)如图所示:
(3)40×45%=18(人).
故答案为:18.
(4)
P(恰好选出甲和乙参加讲座)=.
19.
(1)证明:∵,
∴BC=EF,
∵,
∴∠ABC=∠DEF,
又∵,
∴;
(2)①如图所示,即为所求;
②∥l,理由如下:
∵,与关于直线l对称,
∴,
过点作M⊥l,过点D 作DN⊥l,则M∥DN,且M=DN,
∴四边形MND是平行四边形,
∴∥l,
故答案是:平行.
20.
解:(1)观察图象可知:x=7,y=2.75这组数据错误.
(2)设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得,
解得,
∴,
当x=16时,y=4.5,
答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.
21..
22.
解:(1)∵抛物线过,对称轴为,
∴,
解得
∴抛物线表达式为.
(2)过点作轴于点,
∵,
∴,
设点的横坐标为,
则纵坐标为,
∴,
代入,得:
.
解得(舍去),,
∴
∴点的坐标是(6,7).
(3)由(2)得的坐标是(6,7)
∵对称轴,
∴点的坐标是(-2,7),
∴,
∵与轴平行,点在轴下方,
设以为底边的高为
则,
∴当最大值时,的面积最大,
∵,,
①当时,,
此时在上随的增大而减小.
∴,
∴,
∴的最大面积为:
.
②当时,此时的对称轴
含于内
∴,
∴,
∴的最大面积为:
.
综上所述:当时,的最大面积为,
当时,的最大面积为64.
23.
解:(1)如图,
过点C′作C′H⊥OF于H.
∵△A′B′C′是由△ABC绕点O逆时针旋转得到,
∴C′O=CO=4,
在Rt△HC′中,
∵∠HC′O=α=30°,
∴C′H=C′O•cos30°=2,
∴点C′到直线OF的距离为2.
(2)①如图,当C′P∥OF时,过点C′作C′M⊥OF于M.
∵△A′B′C′为等腰直角三角形,P为A′B′的中点,
∴∠A′C′P=45°,
∵∠A′C′O=90°,
∴∠OC′P=135°.
∵C′P∥OF,
∴∠O=180°﹣∠OC′P=45°,
∴△OC′M是等腰直角三角形,
∵OC′=4,
∴C′M=C′O•cos45°=4×=,
∴点C′到直线DE的距离为.
如图,当C′P∥DG时,过点C′作C′N⊥FG于N.
同法可证△OC′N是等腰直角三角形,
∴C′N=,
∵GD=2,
∴点C′到直线DE的距离为.
②设d为所求的距离.
第一种情形:如图,当点A′落在DE上时,连接OA′,延长ED交OC于M.
∵OC=4,AC=2,∠ACO=90°,
∵OM=2,∠OMA′=90°,
∴A′M===4,
又∵OG=2,
∴DM=2,
∴A′D=A′M-DM=4-2=2,
即d=2,
如图,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.
∵P为A′B′的中点,∠A′C′B′=90°,
∴PQ∥A′C′,
∴
∵B′C′=2
∴PQ=1,C'Q=1,
∴Q点为B′C′的中点,也是旋转前BC的中点,
∴OQ=OC'+C'Q=5
∴OP==,
∴PM=,
∴PD=,
∴d=﹣2,
∴2≤d≤﹣2.
第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,
如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.
由上可知OP=,OF=5,
∴FP===1,
∵OF=OT,PF=PT,∠F=∠PTO=90°,
∴Rt△OPF≌Rt△OPT(HL),
∴∠FOP=∠TOP,
∵PR∥OQ,
∴∠OPR=∠POF,
∴∠OPR=∠POR,
∴OR=PR,
∵PT2+TR2=PR2,
∴PR=2.6,RT=2.4,
∵△B′PR∽△B′QO,
∴=,
∴=,
∴OQ=,
∴QG=OQ﹣OG=,即d=
∴2﹣2≤d<,
第三种情形:当A′P经过点F时,如图,
此时FG=3,即d=3.
综上所述,2≤d<或d=3.
相关试卷
这是一份2023年浙江省杭州市中考数学模拟卷二(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省杭州市中考数学预测卷(含答案),共13页。
这是一份2023浙江省杭州市中考数学模拟卷(二)(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。