高考数学真题专题训练 14数列综合(含解析)
展开这是一份高考数学真题专题训练 14数列综合(含解析),共27页。试卷主要包含了设数列{an}满足a1=3,.,已知是无穷数列.给出两个性质,已知公比大于的等比数列满足.,已知为等差数列,为等比数列,.等内容,欢迎下载使用。
专题14 数列综合
1.(新课标Ⅰ)设是公比不为1的等比数列,为,的等差中项.
(1)求的公比;
(2)若,求数列的前项和.
【答案】(1)-2;(2).
【解析】
(1)设的公比为,为的等差中项,
,
;
(2)设的前项和为,,
,①
,②
①②得,
,
.
2.(新课标Ⅲ)设数列{an}满足a1=3,.
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
【答案】(1),,,证明见解析;(2).
【解析】
(1)由题意可得,,
由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,
证明如下:
当时,成立;
假设时,成立.
那么时,也成立.
则对任意的,都有成立;
(2)由(1)可知,
,①
,②
由①②得:
,
即.
3.(北京卷)已知是无穷数列.给出两个性质:
①对于中任意两项,在中都存在一项,使;
②对于中任意项,在中都存在两项.使得.
(Ⅰ)若,判断数列是否满足性质①,说明理由;
(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.
【解析】
(Ⅰ)不具有性质①;
(Ⅱ)具有性质①;
具有性质②;
(Ⅲ)【解法一】
首先,证明数列中的项数同号,不妨设恒为正数:
显然,假设数列中存在负项,设,
第一种情况:若,即,
由①可知:存在,满足,存在,满足,
由可知,从而,与数列的单调性矛盾,假设不成立.
第二种情况:若,由①知存在实数,满足,由的定义可知:,
另一方面,,由数列的单调性可知:,
这与的定义矛盾,假设不成立.
同理可证得数列中的项数恒为负数.
综上可得,数列中的项数同号.
其次,证明:
利用性质②:取,此时,
由数列的单调性可知,
而,故,
此时必有,即,
最后,用数学归纳法证明数列为等比数列:
假设数列的前项成等比数列,不妨设,
其中,(的情况类似)
由①可得:存在整数,满足,且 (*)
由②得:存在,满足:,由数列的单调性可知:,
由可得: (**)
由(**)和(*)式可得:,
结合数列的单调性有:,
注意到均为整数,故,
代入(**)式,从而.
总上可得,数列的通项公式为:.
即数列为等比数列.
【解法二】假设数列中的项数均为正数:
首先利用性质②:取,此时,
由数列的单调性可知,
而,故,
此时必有,即,
即成等比数列,不妨设,
然后利用性质①:取,则,
即数列中必然存在一项的值为,下面我们来证明,
否则,由数列的单调性可知,
在性质②中,取,则,从而,
与前面类似的可知则存在,满足,
若,则:,与假设矛盾;
若,则:,与假设矛盾;
若,则:,与数列的单调性矛盾;
即不存在满足题意的正整数,可见不成立,从而,
同理可得:,从而数列为等比数列,
同理,当数列中的项数均为负数时亦可证得数列为等比数列.
由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.
从而题中的结论得证,数列为等比数列.
4.(江苏卷)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ–k”数列.
(1)若等差数列是“λ–1”数列,求λ的值;
(2)若数列是“”数列,且an>0,求数列的通项公式;
(3)对于给定的λ,是否存在三个不同的数列为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
【答案】(1)1
(2)
(3)
【解析】
(1)
(2)
,
(3)假设存在三个不同的数列为数列.
或
或
∵对于给定的,存在三个不同的数列为数列,且
或有两个不等的正根.
可转化为,不妨设,则有两个不等正根,设.
① 当时,,即,此时,,满足题意.
② 当时,,即,此时,,此情况有两个不等负根,不满足题意舍去.
综上,
5.(山东卷)已知公比大于的等比数列满足.
(1)求的通项公式;
(2)求.
【答案】(1);(2)
【解析】
(1) 设等比数列的公比为q(q>1),则,
整理可得:,
,
数列的通项公式为:.
(2)由于:,故:
.
6.(天津卷)已知为等差数列,为等比数列,.
(Ⅰ)求和的通项公式;
(Ⅱ)记的前项和为,求证:;
(Ⅲ)对任意的正整数,设求数列的前项和.
【答案】(Ⅰ),;(Ⅱ)证明见解析;(Ⅲ).
【解析】
(Ⅰ)设等差数列的公差为,等比数列的公比为q.
由,,可得d=1.
从而的通项公式为.
由,
又q≠0,可得,解得q=2,
从而的通项公式为.
(Ⅱ)证明:由(Ⅰ)可得,
故,,
从而,
所以.
(Ⅲ)当n奇数时,,
当n为偶数时,,
对任意的正整数n,有,
和 ①
由①得 ②
由①②得,
由于,
从而得:.
因此,.
所以,数列的前2n项和为.
7.(浙江卷)已知数列{an},{bn},{cn}中,.
(Ⅰ)若数列{bn}为等比数列,且公比,且,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差,证明:.
【答案】(I);(II)证明见解析.
【解析】
(I)依题意,而,即,由于,所以解得,所以.
所以,故,所以数列是首项为,公比为的等比数列,所以.
所以().
所以
(II)依题意设,由于,
所以,
故
.
所以
.
由于,所以,所以.
即,.
1.【高考全国II卷理数】已知数列{an}和{bn}满足a1=1,b1=0,,.
(I)证明:{an+bn}是等比数列,{an–bn}是等差数列;
(II)求{an}和{bn}的通项公式.
【答案】(I)见解析;(2),.
【解析】(1)由题设得,即.
又因为a1+b1=l,所以是首项为1,公比为的等比数列.
由题设得,即.
又因为a1–b1=l,所以是首项为1,公差为2的等差数列.
(2)由(1)知,,.
所以,
.
2.【高考北京卷理数】已知数列{an},从中选取第i1项、第i2项、…、第im项(i1
(Ⅱ)已知数列{an}的长度为p的递增子列的末项的最小值为,长度为q的递增子列的末项的最小值为.若p (Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s–1,且长度为s末项为2s–1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式.
【答案】(Ⅰ) 1,3,5,6(答案不唯一);(Ⅱ)见解析;(Ⅲ)见解析.
【解析】(Ⅰ)1,3,5,6.(答案不唯一)
(Ⅱ)设长度为q末项为的一个递增子列为.
由p 因为的长度为p的递增子列末项的最小值为,
又是的长度为p的递增子列,
所以.
所以·
(Ⅲ)由题设知,所有正奇数都是中的项.
先证明:若2m是中的项,则2m必排在2m−1之前(m为正整数).
假设2m排在2m−1之后.
设是数列的长度为m末项为2m−1的递增子列,则是数列的长度为m+1末项为2m的递增子列.与已知矛盾.
再证明:所有正偶数都是中的项.
假设存在正偶数不是中的项,设不在中的最小的正偶数为2m.
因为2k排在2k−1之前(k=1,2,…,m−1),所以2k和不可能在的同一个递增子列中.
又中不超过2m+1的数为1,2,…,2m−2,2m−1,2m+1,所以的长度为m+1且末项为2m+1的递增子列个数至多为.
与已知矛盾.
最后证明:2m排在2m−3之后(m≥2为整数).
假设存在2m(m≥2),使得2m排在2m−3之前,则的长度为m+1且末项为2m+l的递增子列的个数小于.与已知矛盾.
综上,数列只可能为2,1,4,3,…,2m−3,2m,2m−1,….
经验证,数列2,1,4,3,…,2m−3,2m,2m−1,…符合条件.
所以
3.【高考天津卷理数】设是等差数列,是等比数列.已知.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足其中.
(i)求数列的通项公式;
(ii)求.
【答案】(Ⅰ);(Ⅱ)(i)(ii)
【解析】(Ⅰ)设等差数列的公差为,等比数列的公比为.依题意得解得故.
所以,的通项公式为的通项公式为.
(Ⅱ)(i).
所以,数列的通项公式为.
(ii)
.
4.【高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.
(1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;
(2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有成立,求m的最大值.
【答案】(1)见解析;(2)①bn=n;②5.
【解析】解:(1)设等比数列{an}的公比为q,所以a1≠0,q≠0.
由,得,解得.
因此数列为“M—数列”.
(2)①因为,所以.
由,得,则.
由,得,
当时,由,得,
整理得.
所以数列{bn}是首项和公差均为1的等差数列.
因此,数列{bn}的通项公式为bn=n.
②由①知,bk=k,.
因为数列{cn}为“M–数列”,设公比为q,所以c1=1,q>0.
因为ck≤bk≤ck+1,所以,其中k=1,2,3,…,m.
当k=1时,有q≥1;
当k=2,3,…,m时,有.
设f(x)=,则.
令,得x=e.列表如下:
x
e
(e,+∞)
+
0
–
f(x)
极大值
因为,所以.
取,当k=1,2,3,4,5时,,即,
经检验知也成立.
因此所求m的最大值不小于5.
若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,
所以q不存在.因此所求m的最大值小于6.
综上,所求m的最大值为5.
5.【高考浙江卷】设等差数列的前n项和为,,,数列满足:对每个成等比数列.
(I)求数列的通项公式;
(II)记 证明:
【答案】(I),;(II)证明见解析.
【解析】(I)设数列的公差为d,由题意得
,
解得.
从而.
所以,
由成等比数列得
.
解得.
所以.
(II).
我们用数学归纳法证明.
(i)当n=1时,c1=0<2,不等式成立;
(ii)假设时不等式成立,即.
那么,当时,
.
即当时不等式也成立.
根据(i)和(ii),不等式对任意成立.
1. (浙江卷)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列
{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
(Ⅰ)求q的值;
(Ⅱ)求数列{bn}的通项公式.
【答案】(Ⅰ)
(Ⅱ)
【解析】
(Ⅰ)由是的等差中项得,
所以,
解得.
由得,
因为,所以.
(Ⅱ)设,数列前n项和为.
由解得.
由(Ⅰ)可知,
所以,
故,
.
设,
所以,
因此,
又,所以.
2. (天津卷)设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.
(I)求和的通项公式;
(II)设数列的前n项和为,
(i)求;
(ii)证明.
【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.
【解析】(I)设等比数列的公比为q.由
可得.因为,可得,故.
设等差数列的公差为d,由,可得
由,可得
从而 故
所以数列的通项公式为,
数列的通项公式为
(II)(i)由(I),有,
故.
(ii)因为,
所以
3. (江苏卷)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.
(1)设,若对均成立,求d的取值范围;
(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).
【答案】(1)d的取值范围为.
(2)d的取值范围为,证明见解析。
【解析】(1)由条件知:.
因为对n=1,2,3,4均成立,
即对n=1,2,3,4均成立,
即11,1d3,32d5,73d9,得.
因此,d的取值范围为.
(2)由条件知:.
若存在d,使得(n=2,3,···,m+1)成立,
即,
即当时,d满足.
因为,则,
从而,,对均成立.
因此,取d=0时,对均成立.
下面讨论数列的最大值和数列的最小值().
①当时,,
当时,有,从而.
因此,当时,数列单调递增,
故数列的最大值为.
②设,当x>0时,,
所以单调递减,从而
因此,当时,数列单调递减,
故数列的最小值为.
因此,d的取值范围为.
4. (江苏卷)设,对1,2,···,n的一个排列,如果当s
(2)求的表达式(用n表示).
【答案】(1)2 5
(2)n≥5时,
【解析】(1)记为排列abc的逆序数,对1,2,3的所有排列,有
,
所以.
对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.
因此,.
(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以.
逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以.
为计算,当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.
因此,.
当n≥5时,
,
因此,n≥5时, .
5. (全国Ⅱ卷理数) 记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求,并求的最小值.
【答案】(1)an=2n–9,(2)Sn=n2–8n,最小值为–16.
【解析】
(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.
(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.
12. (全国Ⅲ卷理数)等比数列中,.
(1)求的通项公式;
(2)记为的前项和.若,求.
【答案】(1)或
(2)
【解析】(1)设的公比为,由题设得.
由已知得,解得(舍去),或.
故或.
(2)若,则.由得,此方程没有正整数解.
若,则.由得,解得.
综上,.
1.【2017山东,理19】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2)…Pn+1(xn+1, n+1)得到折线P1 P2…Pn+1,求由该折线与直线y=0,所围成的区域的面积.
【答案】(I)(II)
(II)过……向轴作垂线,垂足分别为……,
由(I)得
记梯形的面积为.
由题意,
所以
……+
=……+ ①
又……+ ②
①-②得
=
所以
2.【2017北京,理20】设和是两个等差数列,记,
其中表示这个数中最大的数.
(Ⅰ)若,,求的值,并证明是等差数列;
(Ⅱ)证明:或者对任意正数,存在正整数,当时,;或者存在正整数,使得是等差数列.
【答案】(1)见解析(2)见解析
【解析】(Ⅰ)分别代入求,观察规律,再证明当时, ,所以关于单调递减. 所以,从而得证;(Ⅱ)首先求的通项公式,分三种情况讨论证明.
试题解析:(Ⅰ)
,
.
当时, ,
所以关于单调递减.
所以.
所以对任意,于是,
所以是等差数列.
(Ⅱ)设数列和的公差分别为,则
.
所以
①当时,取正整数,则当时, ,因此.
此时, 是等差数列.
②当时,对任意,
此时, 是等差数列.
③当时,
当时,有.
所以
对任意正数,取正整数,
故当时, .
3.【2017天津,理18】已知为等差数列,前n项和为,是首项为2的等比数列,且公比大于0,,,.
(Ⅰ)求和的通项公式;
(Ⅱ)求数列的前n项和.
【答案】 (1)..(2).
【解析】
(I)设等差数列的公差为,等比数列的公比为.
由已知,得,而,所以.
又因为,解得.所以, .
由,可得 ①.
由,可得 ②,
联立①②,解得, ,由此可得.
所以,数列的通项公式为,数列的通项公式为.
(II)解:设数列的前项和为,
由, ,有,
故,
,
上述两式相减,得
得.
所以,数列的前项和为.
4.【2017江苏,19】 对于给定的正整数,若数列满足
对任意正整数总成立,则称数列是“数列”.
(1)证明:等差数列是“数列”;
(2)若数列既是“数列”,又是“数列”,证明:是等差数列.
【答案】(1)见解析(2)见解析
【解析】证明:(1)因为是等差数列,设其公差为,则,
从而,当时,
,
所以,
因此等差数列是“数列”.
(2)数列既是“数列”,又是“数列”,因此,
当时, ,①
当时, .②
由①知, ,③
,④
将③④代入②,得,其中,
所以是等差数列,设其公差为.
在①中,取,则,所以,
在①中,取,则,所以,
所以数列是等差数列.
1.【2016高考上海理数】已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是( )
(A) (B)
(C) (D)
【答案】B
【解析】由题意得:,所以,所以对一切正整数恒成立,当时,不恒成立,舍去;当时,,因此选B.
2.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
【答案】(1).(2)不具有性质.(3)见解析.
【解析】(1)因为,所以,,.
于是,又因为,解得.
(2)的公差为,的公比为,
所以,.
.
,但,,,
所以不具有性质.
(3)[证]充分性:
当为常数列时,.
对任意给定的,只要,则由,必有.
充分性得证.
必要性:
用反证法证明.假设不是常数列,则存在,
使得,而.
下面证明存在满足的,使得,但.
设,取,使得,则
,,故存在使得.
取,因为(),所以,
依此类推,得.
但,即.
所以不具有性质,矛盾.
必要性得证.
综上,“对任意,都具有性质”的充要条件为“是常数列”.
相关试卷
这是一份2011-2020年高考数学真题分专题训练 专题19 数列的求和问题(含解析),共39页。
这是一份高考数学真题专题训练 08数列(含解析),共15页。试卷主要包含了 80 等内容,欢迎下载使用。
这是一份高考数学真题专题训练 16概率与统计综合(含解析),共35页。试卷主要包含了01);,,得下表,5×9=256,25等内容,欢迎下载使用。