中考数学总复习第15讲 一元一次方程的实际应用(一)难点解析与训练
展开第15讲 一元一次方程的实际应用(一)
【学习目标】
1.熟练掌握分析解决实际问题的一般方法及步骤;
2.熟悉行程,工程,配套及和差倍分问题的解题思路.
【要点梳理】
要点一、用一元一次方程解决实际问题的一般步骤
审、设、列、解、检验、答.
要点二、常见列方程解应用题的几种类型
1.和、差、倍、分问题
(1)基本量及关系:增长量=原有量×增长率,
现有量=原有量+增长量,现有量=原有量-降低量.
(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.
2.行程问题
(1)三个基本量间的关系: 路程=速度×时间
(2)基本类型有:
①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间
Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.
②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间
Ⅱ.寻找相等关系:
第一, 同地不同时出发:前者走的路程=追者走的路程;
第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.
③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
顺水速度-逆水速度=2×水速;
Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.
(3)借助画行程图来分析.
3.工程问题
如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:
(1)总工作量=工作效率×工作时间;
(2)总工作量=各单位工作量之和.
4.调配问题
寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.
【典型例题】
类型一、和差倍分问题
1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
举一反三:
【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?
类型二、行程问题
1.车过桥问题
2. 某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.
期望数学岛
【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):
(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.
(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.
举一反三:
【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?
2.相遇问题(相向问题)
3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程.
举一反三:
【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.
3.追及问题(同向问题)
4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了,结果又用两小时才追上这辆卡车,求卡车的速度.
4.航行问题(顺逆风问题)
5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,求A、B两地间的距离.
【思路点拨】由于C的位置不确定,要分类讨论:(1)C地在A、B之间;(2)C地在A地上游.
【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.
5.环形问题
6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度
的倍,环城一周是20千米,求两个人的速度。
举一反三:
【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A…方向,甲从A以63m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?
类型三、工程问题
7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
举一反三:
【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割后,改用新式农机,工作效率提高到原来的倍,因此比预计时间提早1小时完成,求这块水稻田的面积.
类型四、配套问题(比例问题、劳动力调配问题)
8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?
举一反三:
【变式】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?
【巩固练习】
一、选择题
1.甲乙两地相距180千米,已知轮船在静水中的航速是a千米/小时,水流速度是10千米/小时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是( ).
A.40千米 B.50千米 C.60千米 D.140千米
2.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是 ( )
A.60秒 B.30秒 C.40秒 D.50秒
3. 有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m-1; ②; ③; ④40m+10=43m+1,其中正确的是( )
A.①② B.②④ C.②③ D.③④
4.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰比乙组人数的一半多2个,设乙组原有x人,则可列方程( ).
A. B.
C. D.
5.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费),超过3km以后,每增加1km,加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程的最大值是( )
A.11 B.8 C.7 D.5
二、填空题
6.(江苏淮安)小明根据方程5x+2=6x-8编写了一道应用题.请你把空缺的部分补充完整:某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;______________.请问手工小组有几人?(设手工小组有x人).
7.9人14天完成了一件工作的,而剩下的工作要在4天内完成,则需增加的人数是__________.
8. 轮船在静水中速度为每小时20km,水流速度为每小时4km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.若设两码头间的距离为x km,可列方程 .
9.王会计在结账时发现现金少了153.9元,查账时得知是一笔支出款的小数点看错了一位.王会计查出这笔看错了的支出款实际是________元.
10.某市开展“保护母亲河”植树造林活动,该市金桥村有1000亩荒山绿化率达80%,300亩良田视为已绿化,河坡地植树面积已达20%,目前金桥村所有土地的绿化率为60%,则河坡地有________亩.
11.(重庆市潼南)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a = 度.
三、解答题
12. 某工人按原计划每天生产20个零件,到预定期限还有100个零件不能完成,若把工效提高25%,到期将超额完成50个,问此工人原计划生产零件多少个?预定期限是多少天?
13. 在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?
14. 已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:
(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置.
(2)首次相遇后,又经过多少时间他们再次相遇?
(3)他们第100次相遇时,在哪一段跑道上?
中考数学总复习第16讲 分式方程及其应用难点解析与训练: 这是一份中考数学总复习第16讲 分式方程及其应用难点解析与训练,共8页。试卷主要包含了分式方程的解法,分式方程增根,列分式方程解应用题等内容,欢迎下载使用。
中考数学总复习第08讲 实际问题与一元一次方程难点解析与训练: 这是一份中考数学总复习第08讲 实际问题与一元一次方程难点解析与训练,共9页。试卷主要包含了熟练掌握运用方程解决实际问题•等内容,欢迎下载使用。
中考数学总复习第13讲 因式分解及其应用难点解析与训练: 这是一份中考数学总复习第13讲 因式分解及其应用难点解析与训练,共7页。试卷主要包含了因式分解的定义,因式分解的基本原则,已知,则的值为,分解因式等内容,欢迎下载使用。