![数学八年级上册13.3.2 等边三角形-八年级数学人教版(上)(解析版)第1页](http://www.enxinlong.com/img-preview/2/3/14162240/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学八年级上册13.3.2 等边三角形-八年级数学人教版(上)(解析版)第2页](http://www.enxinlong.com/img-preview/2/3/14162240/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学八年级上册13.3.2 等边三角形-八年级数学人教版(上)(解析版)第3页](http://www.enxinlong.com/img-preview/2/3/14162240/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形习题
展开
这是一份数学第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形习题,共7页。试卷主要包含了 3等内容,欢迎下载使用。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是
A.10°B.15°C.20°D.25°
【答案】C
2.等边三角形的三条高把这个三角形分成直角三角形的个数是
A.8个B.10个C.11个D.12个
【答案】D
【解析】如图,直角三角形有:△AEC、△BEC、△AFC、△AFB、△BDA、△BDC、△AEO、△ADO、△BEO、△BFO、△CDO、△CFO.
故选D.
3.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是
A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB
【答案】D
4.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是
A.等边三角形B.等腰直角三角形
C.等腰三角形D.含30°角的直角三角形
【答案】A
【解析】∵这个三角形是轴对称图形,∴一定有两个角相等,∴这是一个等腰三角形.
∵有一个内角是60°,∴这个三角形是等边三角形.故选A.
5.下面几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一条边上的高也是这条边上的中线的三角形;④有一个角为60°的等腰三角形.其中是等边三角形的有
A.4个B.3个C.2个D.1个
【答案】B
【解析】对于①,有两个角为60°的三角形为等边三角形,故①正确;
对于②,三个外角都相等的三角形为等边三角形,故②正确;
对于③,一条边上的高也是这条边上的中线的三角形有可能是等腰三角形或等边三角形,故③错误;
对于④,有一个角为60°的等腰三角形为等边三角形,故④正确.
综上,①②④所述为等边三角形.故选B.
6.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为
A.15°B.30°C.45°D.60°
【答案】D
二、填空题:请将答案填在题中横线上.
7.如图,是等边三角形,BD平分,点E在BC的延长线上,且,,则__________.
【答案】2
【解析】∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,
∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,
∴∠BDC=90°,∴BC=2DC,
∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,
∴CD=CE=1,∴BC=2CD=2,故答案为:2.
8.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=_______度.
【答案】75
【解析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为:75.
9.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=_______时,△AOP为等边三角形.
【答案】5
三、解答题:解答应写出文字说明、证明过程或演算步骤.
10.如图所示,△ABC为等边三角形,BD为中线,延长BC至E,使DE=BD.求证:CE=BC.
【解析】∵△ABC为等边三角形,BD为中线,∴CD=,∠DBC=30°.
∵DB=DE,∴∠E=∠DBC=30°.
∵∠ACB=∠E+∠CDE,∴∠CDE=30°,∴∠CDE=∠E,∴CD=CE,
∴CE=.
11.如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a,则△BEF的形状如何?
12.如图,四边形ABCD是正方形,△EBC是等边三角形.
(1)求证:△ABE≌△DCE;
(2)求∠AED的度数.
【解析】(1)∵四边形ABCD是正方形,△EBC是等边三角形,
∴BA=BC=CD=BE=CE,∠ABC=∠BCD=90°,∠EBC=∠ECB=60°,
∴∠ABE=∠ECD=30°,
在△ABE和△DCE中,,
∴△ABE≌△DCE(SAS).
(2)∵BA=BE,∠ABE=30°,∴∠BAE=(180°-30°)=75°,
∵∠BAD=90°,∴∠EAD=90°-75°=15°,同理可得∠ADE=15°,
∴∠AED=180°-15°-15°=150°.
13.如图,已知点O是∠APB内的一点,M,N分别是点O关于PA,PB的对称点,连接MN,与PA,PB分别相交于点E、F,已知MN=6 cm.
(1)求△OEF的周长;
(2)连接PM,PN,若∠APB=a,求∠MPN(用含a的代数式表示);
(3)当∠a=30°,判定△PMN的形状,并说明理由.
相关试卷
这是一份初中数学人教版八年级上册13.3.2 等边三角形同步达标检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版八年级上册13.3.2 等边三角形综合训练题,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版八年级上册13.3.2 等边三角形同步训练题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)