人教版八年级上册14.2.1 平方差公式第1课时课后测评
展开
这是一份人教版八年级上册14.2.1 平方差公式第1课时课后测评,共3页。试卷主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。
14.3.2 公式法第1课时 运用平方差公式因式分解 教学目标 1.知识与技能 会应用平方差公式进行因式分解,发展学生推理能力. 2.过程与方法 经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性. 3.情感、态度与价值观 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值. 重、难点与关键 1.重点:利用平方差公式分解因式. 2.难点:领会因式分解的解题步骤和分解因式的彻底性. 3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 教学方法 采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维. 教学过程 一、观察探讨,体验新知 【问题牵引】 请同学们计算下列各式. (1)(a+5)(a-5); (2)(4m+3n)(4m-3n). 【学生活动】动笔计算出上面的两道题,并踊跃上台板演. (1)(a+5)(a-5)=a2-52=a2-25; (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n. 【学生活动】从逆向思维入手,很快得到下面答案: (1)a2-25=a2-52=(a+5)(a-5). (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n). 【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解. 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 二、范例学习,应用所学 【例1】把下列各式分解因式:(投影显示或板书) (1)x2-9y2; (2)16x4-y4; (3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2; (5)m2(16x-y)+n2(y-16x). 【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解. 【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演. 【学生活动】分四人小组,合作探究. 解:(1)x2-9y2=(x+3y)(x-3y); (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y); (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by); (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y); (5)m2(16x-y)+n2(y-16x) =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).Www.12999.com 三、随堂练习,巩固深化 1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除. 四、课堂总结,发展潜能 运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底. 五、布置作业,专题突破 课本习题. 板书设计第1课时 运用平方差公式分解因式1、平方差公式: 例: a2-b2=(a+b)(a-b) 练习:
相关试卷
这是一份人教版八年级上册14.2.2 完全平方公式第2课时练习题,共3页。
这是一份初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.2 乘法公式14.2.2 完全平方公式第2课时测试题,共9页。试卷主要包含了能说出平方差公式的特点.,知道因式分解的要求,16a4=2;等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.2 乘法公式14.2.1 平方差公式第1课时课后复习题,共4页。