中考数学一轮复习考点巩固练习专题06 方程与不等式的实际运用(教师版)
展开
这是一份中考数学一轮复习考点巩固练习专题06 方程与不等式的实际运用(教师版),共20页。
专题06 方程与不等式的实际运用
题型1:工程问题
1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别
承包了杨家坪地区的A工程、B工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴
天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了
天.
【分析】根据题意找出两个等量关系:①甲工程队晴天所做的工程量+雨天所做的工程量=总工程量;②乙工程队晴天所做的工程量+雨天所做的工程量=总工程量.设工程总量为1,则甲工程队晴天工作效率为,雨天工作效率为;乙工程队晴天工作效率为,雨天工作效率为,根据等量关系列出方程组求解即可.
【详解】解:设两工程队各工作了x天,在施工期间有y天有雨,
由题意得:,
解得:.
即两工程队各工作了17天.
故答案为:17.
2.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的.
(1)求长益段高铁与长益城际铁路全长各为多少千米?
(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?
【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)千米.
【分析】
(1)设开通后的长益高铁的平均速度为千米/分钟,从而可得某次长益城际列车的平均速度为千米/分钟,再根据“路程速度时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;
(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.
【详解】
解:(1)设开通后的长益高铁的平均速度为千米/分钟,则某次长益城际列车的平均速度为千米/分钟,
由题意得:,
解得,
则(千米),(千米),
答:长益段高铁全长为64千米,长益城际铁路全长为104千米;
(2)由题意得:甲工程队每天对其施工的长度为(千米),
乙工程队每天对其施工的长度(千米),
设甲工程队后期每天施工千米,
则,
解得,
即,
答:甲工程队后期每天至少施工千米.
题型2:行程问题
3.某体育场的环形跑道长400m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔
30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次.则甲的速度是 m/s.
【分析】设甲的速度为xm/s,乙的速度为ym/s,根据“某体育场的环形跑道长400m,如果反向而行,他们每隔30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次”,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【解答】解:设甲的速度为xm/s,乙的速度为ym/s,
依题意,得:,
解得:.
故答案为:.
4.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.
【答案】25分钟
【分析】
设走路线一到达太原机场需要分钟,用含x的式子表示路线一、二的速度,再根据路线二平均速度是路线一的倍列等式计算即可.
【详解】
解:设走路线一到达太原机场需要分钟.
根据题意,得.
解得:.
经检验,是原方程的解.
答:走路线一到达太原机场需要25分钟.
5.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家的洞庭湖博物馆参观.小明从家骑自行车先走,后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.
【答案】妈妈开车的平均速度是48km/h.
【分析】
设妈妈开车的平均速度为xkm/h,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论.
【详解】
解:设妈妈开车的平均速度为xkm/h,则小明的速度为km/h,根据题意得,
解得,
经检验,是原方程的根,
答:妈妈开车的平均速度是48km/h.
题型3:历史文献问题
6.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有人,辆车,则可列方程组为( )
A. B. C. D.
【答案】C
【分析】
设共有人,辆车,由每3人坐一辆车,有2辆空车,可得 由每2人坐一辆车,有9人需要步行,可得: 从而可得答案.
【详解】
解:设共有人,辆车,则
故选:
7.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)
【答案】46
【分析】
题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.
【详解】
解:设有人一起分银子,根据题意建立等式得,
,
解得:,
银子共有:(两)
故答案是:46.
8.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.
【答案】53
【分析】
设人数为,再根据两种付费的总钱数一样即可求解.
【详解】
解:设一共有人
由题意得:
解得:
所以价值为:(钱)
故答案是:53.
题型4:数字问题
9.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).
【答案】5
【分析】
根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为,则最大数为,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.
【详解】
解:设这个最小数为.
根据题意,得.
解得,(不符合题意,舍去).
答:这个最小数为5.
题型5:增长率问题
10.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x,则可列方程为( )
A. B.
C. D.
【答案】C
【分析】
根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.
【详解】
设从2018年到2020年快递业务量的年平均增长率为x,
2018年我国快递业务量为:507亿件,
2019年我国快递业务量为:=亿件,
2020年我国快递业务量为:+,
根据题意,得:
故选C.
11.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.
【答案】
【分析】
根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.
【详解】
解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值
列方程得:,
故答案为:.
题型6:几何图形问题
12.在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是( )
A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000
C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=3000
【答案】B
【详解】
解:设边框的宽为x cm,
所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,
根据题意,得:(50+2x)(40+2x)=3000,
故选:B.
13.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.
(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?
(2)围成养鸡场的面积能否达到200m2?请说明理由.
【答案】(1)养鸡场的宽是10m,长为15m;(2)围成养鸡场的面积不能达到200m2,见解析
【详解】
解:(1)设养鸡场的宽为xm,根据题意得:
x(35﹣2x)=150,
解得:x1=10,x2=7.5,
当x1=10时,35﹣2x=15<18,
当x2=7.5时35﹣2x=20>18,(舍去),
则养鸡场的宽是10m,长为15m.
(2)设养鸡场的宽为xm,根据题意得:
x(35﹣2x)=200,
整理得:2x2﹣35x+200=0,
△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,
因为方程没有实数根,
所以围成养鸡场的面积不能达到200m2.
题型7:方案问题
14.(2021·江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
(1)求一、二等奖奖品的单价;
(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.
【分析】
(1)设一、二等奖奖品的单价分别是4x,3x,根据等量关系,列出分式方程,即可求解;
(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为件,根据4≤m≤10,且为整数,m为整数,即可得到答案.
【详解】
解:(1)设一、二等奖奖品的单价分别是4x,3x,
由题意得:,解得:x=15,
经检验:x=15是方程的解,且符合题意,
∴15×4=60(元),15×3=45(元),
答:一、二等奖奖品的单价分别是60元,45元;
(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为件,
∵4≤m≤10,且为整数,m为整数,
∴m=4,7,10,
答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.
15.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件
【分析】
(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;
(2)在(1)的基础之上,结合题意,建立关于m的一元一次不等式组,求解即可得到m的范围,从而根据实际意义确定出m的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;
(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.
【详解】
解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元.
根据题意,得,
解得:,
答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
(2)根据题意,得,
解得:,
∵m为整数,
∴m可取5、6、7,
∴有三种方案:
方案一:购买甲种农机具5件,乙种农机具5件;
方案二:购买甲种农机具6件,乙种农机具4件;
方案三:购买甲种农机具7件,乙种农机具3件.
设总资金为W万元,则,
∵,
∴W随m的增大而增大,
∴当时,(万元),
∴方案一需要资金最少,最少资金是10万元.
(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,
根据题意,此时,节省的费用为(万元),
降价后的单价分别为:甲种0.8万元,乙种0.3万元,
设节省的资金可购买a台甲种,b台乙种,
则:,
由题意,a,b均为非负整数,
∴满足条件的解为:或,
∴节省的资金再次购买农机具的方案有两种:
方案一:购买甲种农机具0件,乙种农机具15件;
方案二:购买甲种农机具3件,乙种农机具7件.
16.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?
(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?
【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.
【分析】
(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,然后根据题意可得,进而求解即可;
(2)由(1)及题意可得购进乙种农机具为(10-m)件,则可列不等式组为,然后求解即可;
(3)设购买农机具所需资金为w万元,则由(2)可得,然后结合一次函数的性质及(2)可直接进行求解.
【详解】
解:(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,由题意得:
,
解得:,
答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.
(2)由题意得:购进乙种农机具为(10-m)件,
∴,
解得:,
∵m为正整数,
∴m的值为5、6、7,
∴共有三种购买方案:
购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.
(3)设购买农机具所需资金为w万元,则由(2)可得,
∵1>0,
∴w随m的增大而增大,
∴当m=5时,w的值最小,最小值为w=5+5=10,
答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.
题型8:利润问题
17.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元
【分析】
(1)根据题意,通过列一元二次方程并求解,即可得到答案;
(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.
【详解】
(1)由题意列方程得:(x+40-30) (300-10x)=3360
解得:x1=2,x2=18
∵要尽可能减少库存,
∴x2=18不合题意,故舍去
∴T恤的销售单价应提高2元;
(2)设利润为M元,由题意可得:
M=(x+40-30)(300-10x)=-10x2+200x+3000=
∴当x=10时,M最大值=4000元
∴销售单价:40+10=50元
∴当服装店将销售单价50元时,得到最大利润是4000元.
18.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
购票方式
甲
乙
丙
可游玩景点
和
门票价格
100元/人
80元/人
160元/人
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元
【分析】
(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;
(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低元,景区六月份的门票总收人为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.
【详解】
解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,
由题意,得
解这个方程,得(舍去)
答:四月和五月这两个月中,该景区游客人数平均每月增长20%.
(2)①由题意,丙种门票价格下降10元,得:
购买丙种门票的人数增加:(万人),
购买甲种门票的人数为:(万人),
购买乙种门票的人数为:(万人),
所以:门票收入问;
(万元)
答:景区六月份的门票总收入为798万元.
②设丙种门票价格降低元,景区六月份的门票总收人为万元,
由题意,得
化简,得,
,
∴当时,取最大值,为817.6万元.
答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.
题型9:一般问题
19.(2021·辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.
(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?
(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?
【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.
【分析】
(1)设每本手绘纪念册x元,每本图片纪念册y元,根据题意列出二元一次方程组,求解即可;
(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可.
【详解】
解:(1)设每本手绘纪念册x元,每本图片纪念册y元,
根据题意可得:,
解得,
答:每本手绘纪念册35元,每本图片纪念册25元;
(2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意可得:
,
解得,
∴最多能购买手绘纪念册10本.
20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?
【答案】该景点在设施改造后平均每天用水2吨.
【分析】
设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,列出分式方程,即可求解.
【详解】
解:设该景点在设施改造后平均每天用水x吨,则原来平均每天用水2x吨,
由题意得:,解得:x=2,
经检验:x=2是方程的解,且符合题意,
答:该景点在设施改造后平均每天用水2吨.
21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.
(1)若销售单价为每件45元,求每天的销售利润.
(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?
【答案】(1)1050元;(2)50元
【详解】
解:(1)(元).
答:每天的销售利润为1050元.
(2)设每件工艺品售价为元,则每天的销售量是件,
依题意,得,
整理,得,
解得(不合题意,舍去).
答:每件工艺品售价应为50元.
题型10:分段收费
22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.
(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.
(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?
【分析】(1)设第一档的电价为x元/度,第二档的电价为y元/度,根据“小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)利用小军家4月份的电费=第一档电价×4月份的用电量和小军家5月份的电费=第一档电价×180+第二档电价×(5月份的用电量﹣180),即可求出结论.
【解答】解:(1)设第一档的电价为x元/度,第二档的电价为y元/度,
依题意,得:,
解得:.
答:第一档电价为0.59元/度,第二档的电价为0.64元/度.
(2)0.59×160=94.4(元),
0.59×180+0.64×(230﹣180)=138.2(元).
答:小军家4月份的电费为94.4元,5月份的电费为138.2元.
23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:
自来水销售价格
每户每月用水量
单位:元/吨
15吨及以下
a
超过15吨但不超过25吨的部分
b
超过25吨的部分
5
(1)小王家今年3月份用水20吨,要交水费 元;(用a,b的代数式表示)
(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.
(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.
【分析】(1)根据题意列出代数式即可;
(2)根据题意列方程组,即可得到结论;
(3)根据题意列出二元一次方程,求出符合条件的所有可能情况即可.
【解答】解:(1)∵小王家今年3月份用水20吨,要交水费为15a+5b,
故答案为:(15a+5b);
(2)根据题意得,,
解得:;
(3)设a上调了x元,b的值上调了y元,
根据题意得,15x+6y=9.6,
∴5x+2y=3.2,
∵x,y为整数角钱(没超过1元),
∴当x=0.6元时,y=0.1元,
当x=0.4元时,y=0.6元,
∴a的值上调了0.6元或0.4元,b的值上调了0.1元或0.6元.
相关试卷
这是一份中考数学一轮复习考点复习专题06 方程与不等式的实际运用【考点精讲】(含解析),共24页。
这是一份初中数学中考复习 专题06 方程与不等式的实际运用【考点精讲】(原卷版),共13页。
这是一份初中数学中考复习 专题06 方程与不等式的实际运用【考点精讲】(解析版),共24页。