中考数学一轮复习考点巩固练习专题27 特殊三角形(教师版)
展开这是一份中考数学一轮复习考点巩固练习专题27 特殊三角形(教师版),共17页。试卷主要包含了如图等内容,欢迎下载使用。
专题27 特殊三角形
考点1:等腰三角形的性质与判定
1.(2021·江苏苏州市)如图.在中,,.若,则______.
【答案】54°
【分析】
首先根据等腰三角形的性质得出∠A=∠AEF,再根据三角形的外角和定理得出∠A+∠AEF=∠CFE,求出∠A的度数,最后根据三角形的内角和定理求出∠B的度数即可.
【详解】
∵ AF=EF,
∴ ∠A=∠AEF,
∵∠A+∠AEF=∠CFE=72°,
∴ ∠A=36°,
∵ ∠C=90°,∠A+∠B+∠C=180°,
∴ ∠B=180°-∠A-∠C=54°.
故答案为:54°.
2.(2021·江苏南京市·中考真题)如图,在四边形中,.设,则______(用含的代数式表示).
【答案】
【分析】
由等腰的性质可得:∠ADB=,∠BDC=,两角相加即可得到结论.
【详解】
解:在△ABD中,AB=BD
∴∠A=∠ADB=
在△BCD中,BC=BD
∴∠C=∠BDC=
∵
∴
=
=
=
=
故答案为:.
3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O)沿直径对折后,按图1分成六等份折叠得到图2,将图2沿虚线剪开,再将展开得到如图3的一个六角星.若,则的度数为______.
【答案】135°
【分析】
利用折叠的性质,根据等腰三角形的性质及三角形内角和定理解题.
【详解】
解:连接OC,EO
由折叠性质可得:∠EOC=,EC=DC,OC平分∠ECD
∴∠ECO=
∴∠OEC=180°-∠ECO-∠EOC=135°
即的度数为135°
故答案为:135°
4.(2021·山东中考真题)如图,在中,的平分线交于点,过点作;交于点.
(1)求证:;
(2)若,求的度数.
【答案】(1)见详解;(2)
【分析】
(1)由题意易得,则有,然后问题可求证;
(2)由题意易得,则有,然后由(1)可求解.
【详解】
(1)证明:∵BD平分,
∴,
∵,
∴,
∴,
∴;
(2)解:∵,
∴,
由(1)可得.
5.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
(1)求证:△ABD≌△ACE;
(2)判断△BOC的形状,并说明理由.
【分析】(1)由“SAS”可证△ABD≌△ACE;
(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.
【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)△BOC是等腰三角形,
理由如下:
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,
∴∠OBC=∠OCB,
∴BO=CO,
∴△BOC是等腰三角形.
考点2:等边三角形的性质与判定
6.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,的半径为,P为AB边上一动点,过点P作的切线PQ,切点为Q,则PQ的最小值为________.
【答案】3
【分析】
连接OC和PC,利用切线的性质得到CQ⊥PQ,可得当CP最小时,PQ最小,此时CP⊥AB,再求出CP,利用勾股定理求出PQ即可.
【详解】
解:连接QC和PC,
∵PQ和圆C相切,
∴CQ⊥PQ,即△CPQ始终为直角三角形,CQ为定值,
∴当CP最小时,PQ最小,
∵△ABC是等边三角形,
∴当CP⊥AB时,CP最小,此时CP⊥AB,
∵AB=BC=AC=4,
∴AP=BP=2,
∴CP==,
∵圆C的半径CQ=,
∴PQ==3,
故答案为:3.
7.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 .
【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.
【解析】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,
∴EF=2,
∵DE∥AB,DF∥AC,
∴△DEF是等边三角形,
∴剪下的△DEF的周长是2×3=6.
故答案为:6.
8.(2020•凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;
(2)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;
(3)先判定△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.
【解析】(1)证明:如图1,∵△ABC是等边三角形
∴∠ABQ=∠CAP=60°,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
,
∴△ABQ≌△CAP(SAS);
(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC是△ACM的外角,
∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC
∵∠BAC=60°,
∴∠QMC=60°;
(3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变
理由:同理可得,△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC是△APM的外角,
∴∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,
即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.
考点3:直角三角形的性质
9.(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.
(1)求证:DE=DF;
(2)若∠BDE=40°,求∠BAC的度数.
【分析】(1)根据DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,由于∠B=∠C,D是BC的中点,AAS求证△BED≌△CFD即可得出结论.
(2)根据直角三角形的性质求出∠B=50°,根据等腰三角形的性质即可求解.
【解答】(1)证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵D是BC的中点,
∴BD=CD,
在△BED与△CFD中,
,
∴△BED≌△CFD(AAS),
∴DE=DF;
(2)解:∵∠BDE=40°,
∴∠B=50°,
∴∠C=50°,
∴∠BAC=80°.
10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.
探究发现:
(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立? .(填“是”或“否”)
拓展延伸:
(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若AB=6,CE=9,求AD的长.
【分析】(1)证明∠FDC+∠BDC=90°可得结论.
(2)结论成立:利用等角的余角相等证明∠E=∠EDF,推出EF=FD,再证明FD=FC即可解决问题.
(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.
【解析】(1)如图(2)中,
∵∠EDC=90°,EF=CF,
∴DF=CF,
∴∠FCD=∠FDC,
∵∠ABC=90°,
∴∠A+∠ACB=90°,
∵BA=BD,
∴∠A=∠ADB,
∵∠ACB=∠FCD=∠FDC,
∴∠ADB+∠FDC=90°,
∴∠FDB=90°,
∴BD⊥DF.
故答案为是.
(2)结论成立:
理由:∵BD⊥DF,ED⊥AD,
∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,
∴∠BDC=∠EDF,
∵AB=BD,
∴∠A=∠BDC,
∴∠A=∠EDF,
∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,
∴∠A=∠E,
∴∠E=∠EDF,
∴EF=FD,
∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,
∴∠FCD=∠FDC,
∴FD=FC,
∴EF=FC,
∴点F是EC的中点.
(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.
∴DGEC,
∵BD=AB=6,
在Rt△BDG中,BG,
∴CB3,
在Rt△ABC中,AC3,
∵∠ACB=∠ECD,∠ABC=∠EDC,
∴△ABC∽△EDC,
∴,
∴,
∴CD,
∴AD=AC+CD=3.
11.(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.
(1)如图1,当D,B,F共线时,求证:
①EB=EP;
②∠EFP=30°;
(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.
【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;
②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;
(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.
【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,
∴∠A=90°﹣30°=60°,
同理∠EDF=60°,
∴∠A=∠EDF=60°,
∴AC∥DE,
∴∠DMB=∠ACB=90°,
∵D是Rt△ABC斜边AB的中点,AC∥DM,
∴,
即M是BC的中点,
∵EP=CE,即E是PC的中点,
∴ED∥BP,
∴∠CBP=∠DMB=90°,
∴△CBP是直角三角形,
∴BEPC=EP;
②∵∠ABC=∠DFE=30°,
∴BC∥EF,
由①知:∠CBP=90°,
∴BP⊥EF,
∵EB=EP,
∴EF是线段BP的垂直平分线,
∴PF=BF,
∴∠PFE=∠BFE=30°;
(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,
∵EC=EP,∠DEC=∠QEP,
∴△QEP≌△DEC(SAS),
则PQ=DC=DB,
∵QE=DE,∠DEF=90°
∴EF是DQ的垂直平分线,
∴QF=DF,
∵CD=AD,
∴∠CDA=∠A=60°,
∴∠CDB=120°,
∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,
∴△FQP≌△FDB(SAS),
∴∠QFP=∠BFD,
∵EF是DQ的垂直平分线,
∴∠QFE=∠EFD=30°,
∴∠QFP+∠EFP=30°,
∴∠BFD+∠EFP=30°.
考点4:勾股定理及其逆定理
12.(2021·四川凉山彝族自治州·中考真题)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为( )
A. B.2 C. D.
【答案】D
【分析】
先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.
【详解】
解:∵∠ACB=90°,AC=8,BC=6,
∴AB==10,
∵△ADE沿DE翻折,使点A与点B重合,
∴AE=BE,AD=BD=AB=5,
设AE=x,则CE=AC-AE=8-x,BE=x,
在Rt△BCE中
∵BE2=BC2+CE2,
∴x2=62+(8-x)2,解得x=,
∴CE==,
故选:D.
相关试卷
这是一份中考数学一轮复习考点复习专题27 特殊三角形【考点精讲】(含解析),共23页。试卷主要包含了定义,性质,判定等内容,欢迎下载使用。
这是一份中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版),共46页。
这是一份中考数学一轮复习考点巩固练习专题44 投影与视图(教师版),共11页。