中考数学二轮复习考点精讲专题22 函数与公共点问题(教师版)
展开
题型一:抛物线的形状、位置都固定
【例1】(2021焦作二模)如图,抛物线y=x2+2x+c与x轴的正半轴交于点B,与x轴的负半轴交于点A,与y轴的负半轴交于点C,且OA=2OB.
(1)求抛物线的解析式及顶点坐标;
(2)将抛物线y=x2+2x+c在点A,C之间的部分(含A,C两点)记为G,若二次函数y=-x2-2x+m的图象与G只有一个公共点,求m的取值范围.
【解析】解:(1)设点B的坐标为(n,0),n>0.
∵OA=2OB,且点A在x轴的负半轴上,
∴点A的坐标为(-2n,0).
∵抛物线的对称轴为直线x=-=-1,
∴=-1,
∴n=2,∴点B的坐标为(2,0).
把B(2,0)代入y=x2+2x+c,得c=-8,
∴抛物线的解析式为y=x2+2x-8.
∵y=x2+2x-8=(x+1)2-9,
∴抛物线的顶点坐标为(-1,-9).
(2)易知A(-4,0),C(0,-8).
把C(0,-8)代入y=-x2-2x+m,得m=-8.
把A(-4,0)代入y=-x2-2x+m,得m=8.
当二次函数y=-x2-2x+m的图象的顶点为(-1,-9)时,m=-10.
结合图象分析可知,符合题意的m的取值范围是-8<m≤8或 m=-10.
题型二:抛物线的形状或位置不固定
【例2】(2021广东广州)已知抛物线y=x2-(m+1)x+2m+3.
(1)当m=0时,请判断点(2,4)是否在该抛物线上;
(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
(3)已知点E(-1,-1),F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
【解析】解:(1)当m=0时,y=x2-x+3.
当x=2时,y=4-2+3=5,
故点(2,4)不在该抛物线上.
(2)∵y=x2-(m+1)x+2m+3=(x-)2+,
∴抛物线的顶点坐标为(,).
当顶点移动到最高处时,顶点的纵坐标最大,即的值最大.
∵=-(m-3)2+5,
∴当m=3时,取得最大值,为5,此时=2,
∴当顶点移动到最高处时,该抛物线的顶点坐标为(2,5).
(3)设线段EF所在直线的表达式为y=kx+b.
将E(-1,-1),F(3,7)分别代入,
得解得
∴线段EF所在直线的表达式为y=2x+1.
联立得x2-(m+3)x+2m+2=0,
解得
当x1=x2时,该抛物线与线段EF只有一个交点,
此时=1.
当x1≠x2时,若该抛物线与线段EF只有一个交点,则m+1<-1或m+1>3,
∴<-或>.
综上所述,若该抛物线与线段EF只有一个交点,则该抛物线顶点横坐标满足=1或<-或>.
1.(2021·江苏南京市)已知二次函数的图像经过两点.
(1)求b的值.
(2)当时,该函数的图像的顶点的纵坐标的最小值是________.
(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
【答案】(1);(2)1;(3)或.
【分析】
(1)将点代入求解即可得;
(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;
(3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.
【详解】
解:(1)将点代入得:,
两式相减得:,
解得;
(2)由题意得:,
由(1)得:,
则此函数的顶点的纵坐标为,
将点代入得:,
解得,
则,
下面证明对于任意的两个正数,都有,
,
(当且仅当时,等号成立),
当时,,
则(当且仅当,即时,等号成立),
即,
故当时,该函数的图像的顶点的纵坐标的最小值是1;
(3)由得:,
则二次函数的解析式为,
由题意,分以下两种情况:
①如图,当时,则当时,;当时,,
即,
解得;
②如图,当时,
当时,,
当时,,
解得,
综上,的取值范围为或.
2.(2021·湖南长沙市)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于轴对称,则把该函数称之为“T函数”,其图象上关于轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
(1)若点与点是关于的“T函数”的图象上的一对“T点”,则______,______,______(将正确答案填在相应的横线上);
(2)关于的函数(,是常数)是“T函数”吗?如果是,指出它有多少对“T点”;如果不是,请说明理由;
(3)若关于的“T函数”(,且,,是常数)经过坐标原点,且与直线(,,且,是常数)交于,两点,当,满足时,直线是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
【答案】(1);(2)当时,关于的函数(是常数)不是“函数”,理由见解析;当时,关于的函数(是常数)是“函数”,它有无数对“点”;(3)直线总经过一定点,该定点的坐标为.
【分析】
(1)先根据关于轴对称的点坐标变换规律可得的值,从而可得点的坐标,再将点的坐标代入“函数”即可得;
(2)分和两种情况,当时,设点与点是一对“点”,将它们代入函数解析式可求出,与矛盾;当时,是一条平行于轴的直线,是“函数”,且有无数对“点”;
(3)先将点代入可得,再根据“函数”的定义可得,从而可得,与直线联立可得是方程的两实数根,然后利用根与系数的关系可得,最后根据化简可得,从而可得,由此即可得出答案.
【详解】
解:(1)由题意得:点与点关于轴对称,
,
,
,
将点代入得:,
故答案为:;
(2)由题意,分以下两种情况:
①当时,
假设关于的函数(,是常数)是“函数”,点与点是其图象上的一对“点”,
则,
解得,与相矛盾,假设不成立,
所以当时,关于的函数(是常数)不是“函数”;
②当时,
函数是一条平行于轴的直线,是“函数”,它有无数对“点”;
综上,当时,关于的函数(是常数)不是“函数”;当时,关于的函数(是常数)是“函数”,它有无数对“点”;
(3)由题意,将代入得:,
,
设点与点是“函数”图象上的一对“点”,
则,解得,
,
联立得:,
“函数”与直线交于点,,
是关于的一元二次方程的两个不相等的实数根,
,
,
,即,
解得,
则直线的解析式为,
当时,,
因此,直线总经过一定点,该定点的坐标为.
3.(2021·湖北)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.
(1)写出点坐标;
(2)求,的值(用含的代数式表示);
(3)当时,探究与的大小关系;
(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
【答案】(1);(2),;(3)当时,,当时,,当时,,当或时,;(4),,,
【分析】
(1)令,解出x即可,
(2)把函数顶点式,即可得出结论,
(3)令,结合函数图像分类讨论即可,
(4)由题意可得:直线的解析式为:,再根据已知条件画出函数图像分三类情况讨论,进而得出n的值;
【详解】
(1)∵,令,,
∴,,
∴.
(2),
∴,
∵,
∴.
(3)∵,,
当时,,
此时或,
.
由如图1图象可知:
当时,,
当时,,
当时,,
当或时,.
(4)设直线的解析式为:,
则,
由(1)-(2)得,,
∴,
直线的解析式为:.
第一种情况:如图3,
当直线经过抛物线,的交点时,
联立抛物线与的解析式可得:
①
联立直线与抛物线的解析式可得:
,
则,②
当时,把代入得:,
把,代入直线的解析式得:
,
∴,
∴.
此时直线与抛物线,的公共点恰好为三个不同点.
当时,把代入①得:
,
该方程判别式,所以该方程没有实数根.
第二种情况:如图4,
当直线与抛物线或者与抛物线只有一个公共点时.
当直线与抛物线只有一个公共点时,
联立直线与抛物线可得,
∴,
此时,即,
∴,
∴.
由第一种情况而知直线与抛物线公共点的横坐标为,,
当时,,∴.
所以此时直线与抛物线,的公共点恰好为三个不同点.
如图5,
当直线与抛物线只有一个公共点,
∵,,
∴,
联立直线与抛物线,
,
,
当时,,
此时直线与抛物线,的公共点只有一个,
∴.
综上所述:∴,,,.
4.(2021·湖北)抛物线交轴于,两点(在的左边).
(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.
①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;
②如图(2),若点在抛物线上,且的面积是12,求点的坐标;
(2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.
【答案】(1)①,;②点的坐标是.(2)见解析
【分析】
(1)①根据函数图象与x轴的交点,令y=0,求出,点E在抛物线上,求出纵坐标为,再根据平行四边形的性质,求出;
②连,过点作轴垂线,垂足为,过点作,垂足为,设点坐标为,点坐标为,根据平行四边形的性质,与点在抛物线上,得到,再由则,列出方程求解;
(2)方法一:先求出G、H两点的横坐标,再利用求解即可;方法二:先用待定系数法求出直线与直线l的表达式,根据直线l与抛物线有唯一的交点,求出点坐标为,点坐标为,再求出结果.
【详解】
(1)解:①∵抛物线交轴于,两点(在的左边),
∴令=0,解得:,,
∴,
∵点E在抛物线上,点的横坐标是,
∴,
∵四边形ACDE是平行四边形,
∴
∴;
②设点坐标为,点坐标为.
∵四边形是平行四边形,
∴将沿平移可与重合,点坐标为.
∵点在抛物线上,∴.
解得,,所以.
连,过点作轴垂线,垂足为,过点作,垂足为.
则,
∵,,
∴.
∴,解得,(不合题意,舍去).
∴点的坐标是.
(2)方法一:证明:依题意,得,,∴
设直线解析式为,则,解得.
∴直线的解析式为.
同理,直线的解析式为.
设直线的解析式为.
联立,消去得.
∵直线与抛物线只有一个公共点,
∴,.
联立,且,解得,,
同理,得.
∵,两点关于轴对称,∴.
∴.
∴的值为.
方法二:证明:同方法一得直线的解析式为.
设直线的解析式为,与抛物线唯一公共点为.
联立,消去得,∴.
解得.∴直线的解析式为.
联立,且,解得.
∴点坐标为.同理,点坐标为.
∵,∴.
∴的值为.
5.(2021·湖南)已知函数的图象如图所示,点在第一象限内的函数图象上.
(1)若点也在上述函数图象上,满足.
①当时,求的值;
②若,设,求w的最小值;
(2)过A点作y轴的垂线,垂足为P,点P关于x轴的对称点为,过A点作x轴的线,垂足为Q,Q关于直线的对称点为,直线是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.
【答案】(1)①;②;(2)直线与轴交于定点,定点的坐标为.
【分析】
(1)①先确定,再根据代入求解即可得;
②先确定,从而可得,再代入可得一个关于的二次函数,利用二次函数的性质即可得;
(2)先分别求出点的坐标,再利用待定系数法求出直线的解析式,从而可得点的坐标,然后利用待定系数法求出直线的解析式,由此即可得出结论.
【详解】
解:(1)①对于二次函数,
在内,随的增大而增大,
,
,
则当时,,解得或(舍去),
当时,,解得;
②,
,
,
则,
化成顶点式为,
由二次函数的性质可知,在内,当时,取最小值,最小值为;
(2)由题意,设与交于点,画图如下,
在已知函数的第一象限内的图象上,
,即,
轴,轴,点关于轴的对称点为,
,
设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
关于直线的对称点为,
,
设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
联立,解得,即,
设点的坐标为,
则,解得,即,
设直线的解析式为,
将点代入得:,
解得,
则直线的解析式为,
当时,,
即直线与轴交于定点.
6.(2021·浙江金华市)背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.
探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.
(1)求k的值.
(2)设点的横坐标分别为,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.
①求这个“Z函数”的表达式.
②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).
③过点作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.
【答案】(1)4;(2)①;②图见解析,性质如下(答案不唯一):函数的图象是两个分支组成的曲线;函数的图象关于直角坐标系的原点成中心对称;当时,函数值z随自变量x的增大而增大,当时,函数值z随自变量x的增大面增大;③2,3,4,6.
【分析】
(1)利用待定系数法解题;
(2)①设点A坐标为,继而解得点D的横坐标为,根据题意解题即可;②根据解析式在网格中描点,连线即可画出图象,根据图象的性质解题;③分两种种情况讨论,当过点的直线与x轴垂直时,或当过点的直线与x轴不垂直时,结合一元二次方程解题即可.
【详解】
解:(1)由题意得,,
点A的坐标是,所以;
(2)①设点A坐标为,所以点D的横坐标为,
所以这个“Z函数”表达式为;
②画出的图象如图:
性质如下(答案不唯一);
(a)函数的图象是两个分支组成的,是两条曲线
(b)函数的图象关于直角坐标系的原点成中心对称.
(c)当时,函数值z随自变量x的增大而增大,当时,函数值z随自变量x的增大面增大.
③第一种情况,当过点的直线与x轴垂直时,;
第二种情况,当过点的直线与x轴不垂直时,设该直线的函数表达式为,
,即,
,
由题意得,
,
(a)当时,,解得;
(b)当时,,
解得,
当时,.解得;
当时,,解
所以x的值为.
中考数学二轮复习专题22函数与公共点问题含解析答案: 这是一份中考数学二轮复习专题22函数与公共点问题含解析答案,共25页。试卷主要包含了已知抛物线,已知二次函数的图像经过两点,我们不妨约定,抛物线交x轴于A,B两点,背景等内容,欢迎下载使用。
中考数学一轮复习考点复习专题22 函数与公共点问题【考点精讲】(含解析): 这是一份中考数学一轮复习考点复习专题22 函数与公共点问题【考点精讲】(含解析),共23页。
中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版): 这是一份中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版),共31页。