2023年中考数学二轮专题复习规律猜想问题附解析
展开
这是一份2023年中考数学二轮专题复习规律猜想问题附解析,共8页。
2023年中考数学二轮专题复习规律猜想问题附解析考点一:数字规律要点;探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式。利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程。 练习:1.(2022黄冈)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是 (结果用含m的式子表示).2.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是( )A.﹣ B. C.﹣ D.3.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A.98 B.100 C.102 D.1044.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为an,且满足.则a4= ,a2022= .5.(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是 .6.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是 . 考点二:式子变化规律7.(2021黄冈)人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=,b=,得ab=1,记S1=,S2=,…,S10=,则S1+S2+…+S10= .8.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是 . 考点三:图形变化规律9.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A.297 B.301 C.303 D.40010.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A.4 B.2 C.2 D.0 第10题图 第11题图 第12题图11.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形AnBn∁nDn的面积是( )A. B. C. D.12.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为 .13.(2022•遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 . 考点四:坐标变化规律14.(2022•淄博)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是 . 第14题图 第15题图15.(2022•黔西南州)如图,在平面直角坐标系中,A1(2,0),B1(0,1),A1B1的中点为C1;A2(0,3),B2(﹣2,0),A2B2的中点为C2;A3(﹣4,0),B3(0,﹣3),A3B3的中点为C3;A4(0,﹣5),B4(4,0),A4B4的中点为C4;…;按此做法进行下去,则点C2022的坐标为 .16.(2022•荆门)如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,……,依次进行下去,则点A20的坐标为 . 第16题图 第17题图17.(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022= .18.(2022•齐齐哈尔)如图,直线l:y=x+与x轴相交于点A,与y轴相交于点B,过点B作BC1⊥l交x轴于点C1,过点C1作B1C1⊥x轴交l于点B1,过点B1作B1C2⊥l交x轴于点C2,过点C2作B2C2⊥x轴交l于点B2,…,按照如此规律操作下去,则点B2022的纵坐标是 . 第18 题图 第19题图考点五:其他图形规律19.(2022•烟台)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )A.(2)5 B.(2)6 C.()5 D.()620.(2022•锦州)如图,A1为射线ON上一点,B1为射线OM上一点,∠B1A1O=60°,OA1=3,B1A1=1.以B1A1为边在其右侧作菱形A1B1C1D1,且∠B1A1D1=60°,C1D1与射线OM交于点B2,得△C1B1B2;延长B2D1交射线ON于点A2,以B2A2为边在其右侧作菱形A2B2C2D2,且∠B2A2D2=60°,C2D2与射线OM交于点B3,得△C2B2B3;延长B3D2交射线ON于点A3,以B3A3为边在其右侧作菱形A3B3C3D3,且∠B3A3D3=60°,C3D3与射线OM交于点B4,得△C3B3B4;…,按此规律进行下去,则△C2022B2022B2023的面积为 . 专题1 规律猜想题1.∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2﹣1,∴弦是a+2=m2﹣1+2=m2+1,故答案为:m2+1.2.∴第n个数为:(﹣1)n+1,故选:A.3.则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.4.由题意可得an=,即可求解.∴a2022=,故答案为:,.5.前n行共有个数.故答案为:744.6.【分析】根据第n行的最后一个数是n2,第n行有(2n﹣1)个数即可得出答案.(10,18).考点二:式子变化规律7.∴S1+S2+…+S10=1+1+…+1=10,故答案为10.8.故答案为:﹣x39. 考点三:图形变化规律9.第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,∴第100个图放圆点的个数为:301.故选:B.10.∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.11. 依此可得Sn=,故选:A.12.PnKn=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,13.∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127. 考点四:坐标变化规律14.观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).15.∴点∁n的坐标为(﹣,),∴当n=2022时,﹣=﹣=﹣1011,==,∴点C2022的坐标为(﹣1011,),故答案为:(﹣1011,).16.故答案为:(1024,﹣1024).17.∴S2022=×22021×(22021×)=24041,故答案为:24041.18.依此规律,可得Bn∁n=()n,当n=2022时,B2022C2022=()2022,故答案为:()2022.考点五:其他图形规律19.根据勾股定理得,第6个正方形的边长=()5.故选C.20.由上可得:,,,故答案为:.
相关试卷
这是一份中考数学二轮复习培优专题51 规律问题之图形变化类 (含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学二轮专题复习专题01 规律探究问题(教师版),共69页。试卷主要包含了图形规律探究题,数字规律探究题,与代数计算有关的规律探究题,图形变换规律探究题,函数规律探究题等内容,欢迎下载使用。
这是一份2023届安徽省中考复习专题 观察猜想数学规律与探索解答题含解析卷,共38页。试卷主要包含了观察下列等式,观察下列各式,观察以下等式等内容,欢迎下载使用。