终身会员
搜索
    上传资料 赚现金

    中考数学一轮复习考点梳理+单元突破练习专题19 一次函数(教师版)

    立即下载
    加入资料篮
    中考数学一轮复习考点梳理+单元突破练习专题19  一次函数(教师版)第1页
    中考数学一轮复习考点梳理+单元突破练习专题19  一次函数(教师版)第2页
    中考数学一轮复习考点梳理+单元突破练习专题19  一次函数(教师版)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习考点梳理+单元突破练习专题19 一次函数(教师版)

    展开

    这是一份中考数学一轮复习考点梳理+单元突破练习专题19 一次函数(教师版),共26页。试卷主要包含了常量与变量,函数,确定函数自变量取值的范围的方法,函数的解析式,函数的图像,描点法画函数图形的一般步骤,函数的表示方法等内容,欢迎下载使用。


    专题19 一次函数
    知识点1:函数的定义
    1.常量与变量
    (1)变量:在一个变化过程中可以取不同数值的量。
    (2)常量:在一个变化过程中只能取同一数值的量。
    2.函数:一般的,在一个变化过程中,如果有两个变量和y,并且对于x的每一个确定的
    值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,y是x的函数。如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
    判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应。
    3.确定函数自变量取值的范围的方法:
    (1)关系式为整式时,函数定义域为全体实数;
    (2)关系式含有分式时,分式的分母不等于零;
    (3)关系式含有二次根式时,被开放方数大于等于零;
    (4)关系式中含有指数为零的式子时,底数不等于零;
    (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
    4.函数的解析式:用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式。
    5.函数的图像
    一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
    6.描点法画函数图形的一般步骤
    第一步:列表(表中给出一些自变量的值及其对应的函数值);
    第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
    第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
    7.函数的表示方法
    (1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
    (2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
    (3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
    知识点2:一次函数
    1.正比例函数的定义
    一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
    2.正比例函数的性质
    当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;
    当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
    (1) 解析式:y=kx(k是常数,k≠0)
    (2) 必过点:(0,0)、(1,k)
    (3) 走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
    (4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
    (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
    3.一次函数的定义
    一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。
    ⑴一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
    ⑵当b=0, k≠0时, y=kx仍是一次函数.
    ⑶当b=0, k=0时,它不是一次函数.
    ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
    4.一次函数的性质
    一次函数一般形式是 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数。一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
    (1)解析式:y=kx+b(k、b是常数,k0)
    (2)必过点:(0,b)和(-,0)
    (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
    b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
    直线经过第一、二、三象限
    直线经过第一、三、四象限
    直线经过第一、二、四象限
    直线经过第二、三、四象限
    (4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.
    (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
    (6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;
    当b<0时,将直线y=kx的图象向下平移b个单位.
    一次
    函数


    符号









    图象






    性质
    随的增大而增大
    随的增大而减小
    5.直线()与()的位置关系
    (1)两直线平行且
    (2)两直线相交
    (3)两直线重合且
    (4)两直线垂直
    知识点3:一次函数的应用
    一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。例如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。近几年来一些省市的中考或竞赛试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。
    一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

    1.用待定系数法确定函数解析式的一般步骤
    (1)根据已知条件写出含有待定系数的函数关系式;
    (2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未
    知数的方程;
    (3)解方程得出未知系数的值;
    (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
    2.一次函数y=kx+b的图象的画法.
    根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-b/k,0).即横坐标或纵坐标为0的点.
    b>0
    b<0
    b=0
    经过第一、二、三象限
    经过第一、三、四象限
    经过第一、三象限



    图象从左到右上升,y随x的增大而增大
    经过第一、二、四象限
    经过第二、三、四象限
    经过第二、四象限



    图象从左到右下降,y随x的增大而减小
    3.一元一次方程与一次函数的关系
    任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    4.一次函数与一元一次不等式的关系
    任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
    5.一次函数与二元一次方程组
    (1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=的图象相同.
    (2)二元一次方程组的解可以看作是两个一次函数y=和y=的图象交点.
    6.一次函数的图像与两坐标轴所围成三角形的面积
    (1)一次函数y=kx+b的图象与两条坐标轴的交点:
    与y轴的交点(0,b),与x轴的交点(,0).
    (2)直线(b≠0)与两坐标轴围成的三角形面积为
    s=
    【例题1】(2020•安徽)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是(  )
    A.(﹣1,2) B.(1,﹣2) C.(2,3) D.(3,4)
    【答案】B
    【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.
    【解析】
    A.当点A的坐标为(﹣1,2)时,﹣k+3=3,
    解得:k=1>0,
    ∴y随x的增大而增大,选项A不符合题意;
    B.当点A的坐标为(1,﹣2)时,k+3=﹣2,
    解得:k=﹣5<0,
    ∴y随x的增大而减小,选项B符合题意;
    C.当点A的坐标为(2,3)时,2k+3=3,
    解得:k=0,选项C不符合题意;
    D.当点A的坐标为(3,4)时,3k+3=4,
    解得:k0,
    ∴y随x的增大而增大,选项D不符合题意.
    【例题2】(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是(  )
    A.B. C.D.
    【答案】A
    【分析】求得解析式即可判断.
    【解析】∵函数y=ax+a(a≠0)的图象过点P(1,2),
    ∴2=a+a,解得a=1,
    ∴y=x+1,
    ∴直线交y轴的正半轴,且过点(1,2)。
    《一次函数》单元精品检测试卷
    本套试卷满分120分,答题时间90分钟
    一、选择题(每小题3分,共18分)
    1.(2020•泰州)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于(  )
    A.5 B.3 C.﹣3 D.﹣1
    【答案】C
    【分析】把点P的坐标代入一次函数解析式,得出3a﹣b=2.代入2(3a﹣b)+1即可.
    【解析】∵点P(a,b)在函数y=3x+2的图象上,
    ∴b=3a+2,
    则3a﹣b=﹣2.
    ∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3
    2.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线yx+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是(  )
    A.y=x+2 B.yx+2 C.y=4x+2 D.yx+2

    【答案】C
    【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.
    【解析】∵直线y=2x+2和直线yx+2分别交x轴于点A和点B.
    ∴A(﹣1,0),B(﹣3,0)
    A.y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;
    B.yx+2与x轴的交点为(,0);故直线yx+2与x轴的交点在线段AB上;
    C.y=4x+2与x轴的交点为(,0);故直线y=4x+2与x轴的交点不在线段AB上;
    D.yx+2与x轴的交点为(,0);故直线yx+2与x轴的交点在线段AB上。
    3.(2020•北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是(  )

    A.正比例函数关系 B.一次函数关系
    C.二次函数关系 D.反比例函数关系
    【答案】B
    【分析】根据题意可得容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系式,进而判断出相应函数类型.
    【解析】设容器内的水面高度为h,注水时间为t,根据题意得:
    h=0.2t+10,
    ∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.
    4.(2020•陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为(  )
    A.2 B.3 C.4 D.6
    【答案】B

    【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.
    【解析】在y=x+3中,令y=0,得x=﹣3,
    解得,,
    ∴A(﹣3,0),B(﹣1,2),
    ∴△AOB的面积3×2=3
    5.(2020•连云港)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:
    ①快车途中停留了0.5h;
    ②快车速度比慢车速度多20km/h;
    ③图中a=340;
    ④快车先到达目的地.
    其中正确的是(  )

    A. ①③ B.②③ C.②④ D.①④
    【答案】B
    【分析】根据题意可知两车出发2小时后相遇,据此可知他们的速度和为180(km/h),相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,据此可得慢车的速度为80km/h,进而得出快车的速度为100km/h,根据“路程和=速度和×时间”即可求出a的值,从而判断出谁先到达目的地.
    【解析】根据题意可知,两车的速度和为:360÷2=180(km/h),
    相遇后慢车停留了0.5h,快车停留了1.6h,此时两车距离为88km,故①结论错误;
    慢车的速度为:88÷(3.6﹣2.5)=80(km/h),则快车的速度为100km/h,
    所以快车速度比慢车速度多20km/h;故②结论错误;
    88+180×(5﹣3.6)=340(km),
    所以图中a=340,故③结论正确;
    (360﹣2×80)÷80=2.5(h),5﹣2.5=2.5(h),
    所以慢车先到达目的地,故④结论错误.
    所以正确的是②③.
    6.(2020•嘉兴)一次函数y=2x﹣1的图象大致是(  )
    A.B. C.D.
    【答案】B
    【分析】根据一次函数的性质,判断出k和b的符号即可解答.
    【解析】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.
    二、填空题(每空3分,共30分)
    7.(2020•辽阳)若一次函数y=2x+2的图象经过点(3,m),则m=   .
    【答案】8.
    【分析】利用一次函数图象上点的坐标特征可求出m的值,此题得解.
    【解析】∵一次函数y=2x+2的图象经过点(3,m),
    ∴m=2×3+2=8.
    8.(2020•天津)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为   .
    【答案】y=﹣2x+1.
    【分析】根据一次函数图象上下平移时解析式的变化规律求解.
    【解析】将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.
    9.(2020•苏州)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=  .

    【答案】.
    【分析】作CD⊥x轴于D,CE⊥y轴于E,则BE=4﹣n,CE=3,CD=n,AD=7,根据平行线的性质得出∠ECA=∠CAO,根据题意得出∠BCE=∠CAO,通过解直角三角形得到tan∠CAOtan∠BCE,即可得到,解得即可.
    【解析】作CD⊥x轴于D,CE⊥y轴于E,
    ∵点A、B的坐标分别为(﹣4,0)、(0,4),点C(3,n)在第一象限内,则E(0,n),D(3,0),
    ∴BE=4﹣n,CE=3,CD=n,AD=7,
    ∵CE∥OA,
    ∴∠ECA=∠CAO,
    ∵∠BCA=2∠CAO,
    ∴∠BCE=∠CAO,
    在Rt△CAD中,tan∠CAO,在Rt△CBE中,tan∠BCE,
    ∴,即,
    解得n

    10.(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为  .
    【答案】m.
    【分析】先根据一次函数的性质得出关于m的不等式2m﹣1>0,再解不等式即可求出m的取值范围.
    【解析】∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,
    ∴2m﹣1>0,解得m.
    11.(2020•重庆)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是  .

    【答案】(4,160).
    【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.
    【解析】根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km/h),
    ∴乙货车从B地到A地所用时间为:240÷60=4(小时),
    当乙货车到底A地时,甲货车行驶的路程为:40×4=160(千米),
    ∴点E的坐标是(4,160).
    12.(2020•上海)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而  .(填“增大”或“减小”)
    【答案】减小.
    【分析】根据正比例函数的性质进行解答即可.
    【解析】函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,
    13.(2020•上海)小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行   米.

    【答案】350
    【分析】当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入求得s=70t+400,求出t=15时s的值,从而得出答案.
    【解析】当8≤t≤20时,设s=kt+b,
    将(8,960)、(20,1800)代入,得:

    解得:,
    ∴s=70t+400;
    当t=15时,s=1450,
    1800﹣1450=350,
    ∴当小明从家出发去学校步行15分钟时,到学校还需步行350米。
    14.(2020•黔东南州)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为   .
    【答案】y=2x+3.
    【分析】直接利用一次函数的平移规律进而得出答案.
    【解析】把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,
    再向上平移2个单位长度,得到y=2x+3.
    15.(2020•遵义)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为   .

    【答案】x<4.
    【分析】结合函数图象,写出直线y=kx+2在直线y=2下方所对应的自变量的范围即可.
    【解析】∵直线y=kx+b与直线y=2交于点A(4,2),
    ∴x<4时,y<2,
    ∴关于x的不等式kx+b<2的解集为x<4.
    16.(2020•黔西南州)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是   .

    【答案】y=﹣2x.
    【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.
    【解析】∵点P到x轴的距离为2,
    ∴点P的纵坐标为2,
    ∵点P在一次函数y=﹣x+1上,
    ∴2=﹣x+1,得x=﹣1,
    ∴点P的坐标为(﹣1,2),
    设正比例函数解析式为y=kx,
    则2=﹣k,得k=﹣2,
    ∴正比例函数解析式为y=﹣2x,
    故答案为:y=﹣2x.
    三、解答题(6个小题,每题12分,共72分)
    17.(2020•滨州)如图,在平面直角坐标系中,直线yx﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.
    (1)求交点P的坐标;
    (2)求△PAB的面积;
    (3)请把图象中直线y=﹣2x+2在直线yx﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.

    【答案】见解析。
    【分析】(1)解析式联立,解方程组即可求得交点P的坐标;
    (2)求得A、B的坐标,然后根据三角形面积公式求得即可;
    (3)根据图象求得即可.
    【解析】(1)由解得,
    ∴P(2,﹣2);
    (2)直线yx﹣1与直线y=﹣2x+2中,令y=0,则x﹣1=0与﹣2x+2=0,
    解得x=﹣2与x=1,
    ∴A(﹣2,0),B(1,0),
    ∴AB=3,
    ∴S△PAB3;
    (3)如图所示:

    自变量x的取值范围是x<2.
    18.(2020•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y性质及其应用的部分过程,请按要求完成下列各小题.
    (1)请把下表补充完整,并在图中补全该函数图象;

    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5

    y



      

    ﹣3
    0
    3

      



    (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;
    ①该函数图象是轴对称图形,它的对称轴为y轴.
    ②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.
    ③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.
    (3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式2x﹣1的解集(保留1位小数,误差不超过0.2).

    【答案】见解析。
    【分析】(1)将x=﹣3,3分别代入解析式即可得y的值,再画出函数的图象;
    (2)结合图象可从函数的增减性及对称性进行判断;
    (3)根据图象求得即可.
    【解析】(1)补充完整下表为:
    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5

    y





    ﹣3
    0
    3





    画出函数的图象如图:

    (2)根据函数图象:
    ①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;
    ②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;
    ③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.
    (3)由图象可知:不等式2x﹣1的解集为x<﹣1或﹣0.3<1.8.
    19.(2020•福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.
    (1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?
    (2)求该公司一个月销售这两种特产所能获得的最大总利润.
    【答案】见解析。
    【分析】(1)根据题意,可以列出相应的一元一次方程,从而可以求得这个月该公司销售甲、乙两种特产分别为多少吨;
    (2)根据题意,可以得到利润与甲种特产数量的函数关系式,再根据甲种特产的取值范围和一次函数的性质,可以得到利润的最大值.
    【解析】(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,
    10x+(100﹣x)×1=235,
    解得,x=15,
    ∴100﹣x=85,
    答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;
    (2)设利润为w元,销售甲种特产a吨,
    w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,
    ∵0≤a≤20,
    ∴当a=20时,w取得最大值,此时w=26,
    答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.
    20.(2020•怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
    (1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
    (2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
    【答案】见解析。
    【分析】(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;
    (2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x取最小值时,y有最大值,将x=12代入函数解析式求出结果即可.
    【解析】(1)由题意得:y=(2000﹣1600)x+(3000﹣2500)(20﹣x)=﹣100x+10000,
    ∴全部售出后该商店获利y与x之间函数表达式为y=﹣100x+10000;
    (2)由题意得:,
    解得12≤x≤15,
    ∵x为正整数,
    ∴x=12、13、14、15,
    共有四种采购方案:
    ①甲型电脑12台,乙型电脑8台,
    ②甲型电脑13台,乙型电脑7台,
    ③甲型电脑14台,乙型电脑6台,
    ④甲型电脑15台,乙型电脑5台,
    ∵y=﹣100x+10000,且﹣100<0,
    ∴y随x的增大而减小,
    ∴当x取最小值时,y有最大值,
    即x=12时,y最大值=﹣100×12+10000=8800,
    ∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.
    21.(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.
    (1)根据图象可知,休息前汽车行驶的速度为  千米/小时;
    (2)求线段DE所表示的y与x之间的函数表达式;
    (3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.

    【答案】见解析。
    【分析】(1)观察图象即可得出休息前汽车行驶的速度;
    (2)根据题意求出点E的横坐标,再利用待定系数法解答即可;
    (3)求出到达乙地所行驶的时间即可解答.
    【解析】(1)由图象可知,休息前汽车行驶的速度为80千米/小时;
    故答案为:80;
    (2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),
    ∴点E的坐标为(3.5,240),
    设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:
    ,解得,
    ∴线段DE所表示的y与x之间的函数表达式为80x﹣40;
    (3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),
    12:00﹣8:00=4(小时),
    4.125>4,
    所以接到通知后,汽车仍按原速行驶不能准时到达.
    22.(2020•河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
    方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
    方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
    设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.
    (1)求k1和b的值,并说明它们的实际意义;
    (2)求打折前的每次健身费用和k2的值;
    (3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.

    【答案】见解析。
    【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;
    (2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;
    (3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.
    【解析】(1)∵y1=k1x+b过点(0,30),(10,180),
    ∴,解得,
    k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,
    b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;
    (2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),
    则k2=25×0.8=20;
    (3)选择方案一所需费用更少.理由如下:
    由题意可知,y1=15x+30,y2=20x.
    当健身8次时,
    选择方案一所需费用:y1=15×8+30=150(元),
    选择方案二所需费用:y2=20×8=160(元),
    ∵150<160,
    ∴选择方案一所需费用更少.

    相关试卷

    中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题27 相似(教师版),共46页。

    中考数学一轮复习考点梳理+单元突破练习专题24 圆(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题24 圆(教师版),共38页。试卷主要包含了圆弧和弦,圆心角和圆周角,内心和外心,圆问题的基本题型,5°.等内容,欢迎下载使用。

    中考数学一轮复习考点梳理+单元突破练习专题23 旋转(教师版):

    这是一份中考数学一轮复习考点梳理+单元突破练习专题23 旋转(教师版),共41页。试卷主要包含了旋转,旋转对称中心,旋转的性质,中心对称图形与中心对称,中心对称图形的判定,中心对称的性质等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map