|试卷下载
终身会员
搜索
    上传资料 赚现金
    中考数学一轮复习考点提高练习专题14 函数综合题(教师版)
    立即下载
    加入资料篮
    中考数学一轮复习考点提高练习专题14 函数综合题(教师版)01
    中考数学一轮复习考点提高练习专题14 函数综合题(教师版)02
    中考数学一轮复习考点提高练习专题14 函数综合题(教师版)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习考点提高练习专题14 函数综合题(教师版)

    展开
    这是一份中考数学一轮复习考点提高练习专题14 函数综合题(教师版),共25页。试卷主要包含了一次函数与二次函数的综合,一次函数与反比例函数的综合,二次函数与反比例函数的综合,满足关系式z=﹣2x+120.等内容,欢迎下载使用。

    专题14 函数的综合问题
    专题知识回顾



    1.一次函数与二次函数的综合。
    2.一次函数与反比例函数的综合。
    3.二次函数与反比例函数的综合。
    4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析



    【例题1】(2019黑龙江绥化)一次函数y1=-x+6与反比例函数y2=(x>0)的图象如图所示.当y1>y2时,自变量x的取值范围是______.

    第18题图
    【答案】2 【解析】令-x+6=,解得x1=2,x2=4,∴根据图象可得,当y1>y2时,自变量x的取值范围是2 【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则ɑ的值为

    【答案】2.
    【解析】本题主要考查二次函数的综合运用,首先根据二次函数的解析式可得出点A和点M的坐标,然后将二次函数的解析式配方写出y=a(x-1)2+-a的形式,得出点P的坐标,进而得出OP的方程,进而得出点B的坐标,最后根据M为线段AB的中点,可得=4,进而得出答案.
    令x=0,可得y=,
    ∴点A的坐标为(0,),
    ∴点M的坐标为(2,).
    ∵y=ax2-2ax+=a(x-1)2+-a,
    ∴抛物线的顶点P的坐标为(1,-a),
    ∴直线OP的方程为y=(-a)x,
    令y=,可得x=,
    ∴点B的坐标为(,).
    ∵M为线段AB的中点,
    ∴=4,解得a=2。
    【例题3】(2019广西省贵港市)如图,菱形的边在轴上,点的坐标为,点在反比例函数的图象上,直线经过点,与轴交于点,连接,.
    (1)求,的值;
    (2)求的面积.

    【答案】将解析。
    【解析】由菱形的性质可知,,点代入反比例函数,求出;将点代入,求出;求出直线与轴和轴的交点,即可求的面积;
    (1)由已知可得,
    菱形,
    ,,
    点在反比例函数的图象上,

    将点代入,

    (2),
    直线与轴交点为,

    专题典型训练题


    1.(2019广东深圳)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=的图象为( )

    【答案】C
    【解析】二次函数的图象与系数的关系;一次函数的图象与系数的关系;反比例函数的图象与系数的关系;符号判断。先根据二次函数y=ax2+bx+c(a≠0)的图象确定a,b,c的正负,则判断一次函数与反比例函数的图象所在的象限.
    由二次函数的图象可知,a<0,b>0,c<0.当a<0,b>0,c<0时,一次函数y=ax+b经过第一、二、四象限;反比例函数y=位于第二、四象限,选项C符合.故选C.
    2.(2019四川省雅安市) 已知函数的图像如图所示,若直线y=x+m与该图像恰有三个不同的交点,则m的取值范围为 ___________.

    【答案】0 【解析】观察图像可知,当直线y=x+m经过原点时与函数的图像有两个不同的交点,再向上平移,有三个交点,当向上平移到直线y=x+m与的图像有一个交点时,此直线y=x+m与函数的图像有两个不同的交点,不符合题意,从而求出m的取值范围.
    由y=x+m与得,整理得,当有两个交点
    ,解得m<,
    当直线y=x+m经过原点时与函数的图像有两个
    不同的交点,再向上平移,有三个交点,∴m>0,∴m的取值范围为0 3. (2019湖北仙桃)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.
    (1)直接写出y关于t的函数解析式及t的取值范围:   ;
    (2)当PQ=3时,求t的值;
    (3)连接OB交PQ于点D,若双曲线y(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.

    【答案】见解析。
    【解析】(1)过点P作PE⊥BC于点E,如图1所示.

    当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),
    ∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,
    ∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100,
    ∴y=25t2﹣80t+100(0≤t≤4).
    故答案为:y=25t2﹣80t+100(0≤t≤4).
    (2)当PQ=3时,25t2﹣80t+100=(3)2,
    整理,得:5t2﹣16t+11=0,
    解得:t1=1,t2.
    (3)经过点D的双曲线y(k≠0)的k值不变.
    连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.

    ∵OC=6,BC=8,
    ∴OB10.
    ∵BQ∥OP,
    ∴△BDQ∽△ODP,
    ∴,
    ∴OD=6.
    ∵CB∥OA,
    ∴∠DOF=∠OBC.
    在Rt△OBC中,sin∠OBC,cos∠OBC,
    ∴OF=OD•cos∠OBC=6,DF=OD•sin∠OBC=6,
    ∴点D的坐标为(,),
    ∴经过点D的双曲线y(k≠0)的k值为.
    4. (2019湖南湘西)如图,一次函数y=kx+b的图象与反比例函数y的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.
    (1)求函数y和y=kx+b的解析式;
    (2)结合图象直接写出不等式组0kx+b的解集.

    【答案】见解析。
    【解析】(1)把点A(3,2)代入反比例函数y,可得m=3×2=6,
    ∴反比例函数解析式为y,
    ∵OB=4,
    ∴B(0,﹣4),
    把点A(3,2),B(0,﹣4)代入一次函数y=kx+b,可得,
    解得,
    ∴一次函数解析式为y=2x﹣4;
    (2)不等式组0kx+b的解集为:x>3.
    5.(2019山东东营)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(-2,a)、B 两点,BC⊥x 轴,垂足为 C,△AOC的面积是2.
    (1)求 m、n的值;
    (2)求直线 AC的解析式.

    【答案】见解析。
    【解析】根据反比例函数的对称性可得点A与点B关于原点中心对称,则B(2,a),由于BC⊥x轴,所以C(2,0),先利用三角形面积公式得到×2×a=2,解得a=2,则可确定A(﹣2,2),然后把A点坐标代入y=mxy=mx和y=中即可求出m,n;根据待定系数法即可得到直线AC的解析式.
    (1)∵直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,
    ∴点A与点B关于原点中心对称,
    ∴B(2,﹣a),
    ∴C(2,0);
    ∵S△AOC=2,
    ∴×2×a=2,解得a=2,
    ∴A(﹣2,2),
    把A(﹣2,2)代入y=mx和y=得﹣2m=2,2=,解得m=﹣1,n=﹣4;
    (2)设直线AC的解析式为y=kx+b,
    ∵直线AC经过A、C,
    ∴,解得
    ∴直线AC的解析式为y=﹣x+1.
    6.(2019湖北咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.
    (1)第40天,该厂生产该产品的利润是   元;
    (2)设第x天该厂生产该产品的利润为w元.
    ①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?
    ②在生产该产品的过程中,当天利润不低于2400元的共有多少天?

    【答案】见解析。
    【解析】由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40,则可求得第40天的利润.利用每件利润×总销量=总利润,进而求出二次函数最值即可.
    (1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40
    则第40天的利润为:(80﹣40)×40=1600元
    故答案为1600
    (2)①设直线AB的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得
    ,解得
    ∴直线AB的解析式为y=﹣x+70
    (Ⅰ)当0<x≤30时
    w=[80﹣(﹣x+70)](﹣2x+120)
    =﹣2x2+100x+1200
    =﹣2(x﹣25)2+2450
    ∴当x=25时,w最大值=2450
    (Ⅱ)当30<x≤50时,
    w=(80﹣40)×(﹣2x+120)=﹣80x+4800
    ∵w随x的增大而减小
    ∴当x=31时,w最大值=2320

    第25天的利润最大,最大利润为2450元
    ②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元
    解得x1=20,x2=30
    ∵抛物线w=﹣2(x﹣25)2+2450开口向下
    由其图象可知,当20≤x≤30时,w≥2400
    此时,当天利润不低于2400元的天数为:30﹣20+1=11天
    (Ⅱ)当30<x≤50时,
    由①可知当天利润均低于2400元
    综上所述,当天利润不低于2400元的共有11天.
    7. (2019贵州省毕节市)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
    (1)抛物线的解析式为   ,抛物线的顶点坐标为   ;
    (2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;
    (3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;
    (4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.

    【答案】见解析。
    【解析】函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;
    S△CPD:S△BPD=1:2,则BD=BC=×3=2,即可求解;
    ∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;
    利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.
    (1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),
    即:﹣3a=3,解得:a=﹣1,
    故抛物线的表达式为:y=﹣x2﹣2x+3…①,
    顶点坐标为(﹣1,4);
    (2)∵OB=OC,
    ∴∠CBO=45°,
    ∵S△CPD:S△BPD=1:2,
    ∴BD=BC=×3=2,
    yD=BDsin∠CBO=2,
    则点D(﹣1,2);
    (3)如图2,设直线PE交x轴于点H,

    ∵∠OGE=15°,∠PEG=2∠OGE=30°,
    ∴∠OHE=45°,
    ∴OH=OE=1,
    则直线HE的表达式为:y=﹣x﹣1…②,
    联立①②并解得:x=(舍去正值),
    故点P(,);
    (4)不存在,理由:
    连接BC,过点P作y轴的平行线交BC于点H,

    直线BC的表达式为:y=x+3,
    设点P(x,﹣x2﹣2x+3),点H(x,x+3),
    则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,
    整理得:3x2+9x+7=0,
    解得:△<0,故方程无解,
    则不存在满足条件的点P.
    8.(2019贵州黔西南州)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
    (1)抛物线的解析式为   ,抛物线的顶点坐标为   ;
    (2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;
    (3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;
    (4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.

    【答案】见解析。
    【解析】函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;
    S△CPD:S△BPD=1:2,则BDBC2,即可求解;
    ∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;
    利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.
    (1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),
    即:﹣3a=3,解得:a=﹣1,
    故抛物线的表达式为:y=﹣x2﹣2x+3…①,
    顶点坐标为(﹣1,4);
    (2)∵OB=OC,
    ∴∠CBO=45°,
    ∵S△CPD:S△BPD=1:2,
    ∴BDBC2,
    yD=BDsin∠CBO=2,
    则点D(﹣1,2);
    (3)如图2,设直线PE交x轴于点H,

    ∵∠OGE=15°,∠PEG=2∠OGE=30°,
    ∴∠OHE=45°,
    ∴OH=OE=1,
    则直线HE的表达式为:y=﹣x﹣1…②,
    联立①②并解得:x(舍去正值),
    故点P(,);
    (4)不存在,理由:
    连接BC,过点P作y轴的平行线交BC于点H,

    直线BC的表达式为:y=x+3,
    设点P(x,﹣x2﹣2x+3),点H(x,x+3),
    则S四边形BOCP=S△OBC+S△PBC3×3(﹣x2﹣2x+3﹣x﹣3)×3=8,
    整理得:3x2+9x+7=0,
    解得:△<0,故方程无解,
    则不存在满足条件的点P.
    9.(2019湖北十堰)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.
    (1)求抛物线的解析式,并写出D点的坐标;
    (2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)若点P在抛物线上,且m,试确定满足条件的点P的个数.

    【答案】见解析。
    【解析】利用待定系数法,转化为解方程组即可解决问题.
    可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.
    如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.
    (1)由题意:,
    解得,
    ∴抛物线的解析式为y(x﹣2)2+3,
    ∴顶点D坐标(2,3).
    (2)可能.如图1,

    ∵A(﹣2,0),D(2,3),B(6,0),
    ∴AB=8,AD=BD=5,
    ①当DE=DF时,∠DFE=∠DEF=∠ABD,
    ∴EF∥AB,此时E与B重合,与条件矛盾,不成立.
    ②当DE=EF时,
    又∵△BEF∽△AED,
    ∴△BEF≌△AED,
    ∴BE=AD=5
    ③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,
    △FDE∽△DAB,
    ∴,
    ∴,
    ∵△AEF∽△BCE
    ∴,
    ∴EBAD,
    答:当BE的长为5或时,△CFE为等腰三角形.
    (3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,(n﹣2)2+3],

    则S△PBD=S△PBH+S△PDH﹣S△BDH4×[(n﹣2)2+3]3×(n﹣2)4×3(n﹣4)2,
    ∵0,
    ∴n=4时,△PBD的面积的最大值为,
    ∵m,
    ∴当点P在BD的右侧时,m的最大值,
    观察图象可知:当0<m时,满足条件的点P的个数有4个,
    当m时,满足条件的点P的个数有3个,
    当m时,满足条件的点P的个数有2个(此时点P在BD的左侧).
    10.(2019湖北咸宁)如图,在平面直角坐标系中,直线yx+2与x轴交于点A,与y轴交于点B,抛物线yx2+bx+c经过A,B两点且与x轴的负半轴交于点C.
    (1)求该抛物线的解析式;
    (2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;
    (3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.

    【答案】见解析。
    【解析】求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.
    通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.
    B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.
    (1)在中,令y=0,得x=4,令x=0,得y=2
    ∴A(4,0),B(0,2)
    把A(4,0),B(0,2),代入,得
    ,解得
    ∴抛物线得解析式为
    (2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F

    ∵BE∥x轴,∴∠BAC=∠ABE
    ∵∠ABD=2∠BAC,∴∠ABD=2∠ABE
    即∠DBE+∠ABE=2∠ABE
    ∴∠DBE=∠ABE
    ∴∠DBE=∠BAC
    设D点的坐标为(x,),则BF=x,DF
    ∵tan∠DBE,tan∠BAC
    ∴,即
    解得x1=0(舍去),x2=2
    当x=2时,3
    ∴点D的坐标为(2,3)
    (3)

    当BO为边时,OB∥EF,OB=EF
    设E(m,),F(m,)
    EF=|()﹣()|=2
    解得m1=2,,
    当BO为对角线时,OB与EF互相平分

    过点O作OF∥AB,直线OF交抛物线于点F()和()
    求得直线EF解析式为或
    直线EF与AB的交点为E,点E的横坐标为或
    ∴E点的坐标为(2,1)或(,)或()或()或()
    11.(2019湖南湘西)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
    (1)求抛物线的解析式;
    (2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
    (3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
    (4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.

    【答案】见解析。
    【解析】由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.
    因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PE平行y轴交直线OD于点E,把△ODP拆分为△OPE与△DPE的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.
    由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,0).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m的值.
    (1)∵点A在线段OE上,E(8,0),OA=2
    ∴A(2,0)
    ∵OA:AD=1:3
    ∴AD=3OA=6
    ∵四边形ABCD是矩形
    ∴AD⊥AB
    ∴D(2,﹣6)
    ∵抛物线y=ax2+bx经过点D、E
    ∴ 解得:
    ∴抛物线的解析式为yx2﹣4x
    (2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'

    ∵yx2﹣4x(x﹣4)2﹣8
    ∴抛物线对称轴为直线x=4
    ∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)
    ∴yC=yD=﹣6,即点C、D关于直线x=4对称
    ∴xC=4+(4﹣xD)=4+4﹣2=6,即C(6,﹣6)
    ∴AB=CD=4,B(6,0)
    ∵AM平分∠BAD,∠BAD=∠ABM=90°
    ∴∠BAM=45°
    ∴BM=AB=4
    ∴M(6,﹣4)
    ∵点M、M'关于x轴对称,点F在x轴上
    ∴M'(6,4),FM=FM'
    ∵N为CD中点
    ∴N(4,﹣6)
    ∵点N、N'关于y轴对称,点G在y轴上
    ∴N'(﹣4,﹣6),GN=GN'
    ∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'
    ∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小
    ∴C四边形MNGF=MN+M'N'21012
    ∴四边形MNGF周长最小值为12.
    (3)存在点P,使△ODP中OD边上的高为.
    过点P作PE∥y轴交直线OD于点E
    ∵D(2,﹣6)
    ∴OD,直线OD解析式为y=﹣3x
    设点P坐标为(t,t2﹣4t)(0<t<8),则点E(t,﹣3t)
    ①如图2,当0<t<2时,点P在点D左侧

    ∴PE=yE﹣yP=﹣3t﹣(t2﹣4t)t2+t
    ∴S△ODP=S△OPE+S△DPEPE•xPPE•(xD﹣xP)PE(xP+xD﹣xP)PE•xD=PEt2+t
    ∵△ODP中OD边上的高h,
    ∴S△ODPOD•h
    ∴t2+t2
    方程无解
    ②如图3,当2<t<8时,点P在点D右侧

    ∴PE=yP﹣yEt2﹣4t﹣(﹣3t)t2﹣t
    ∴S△ODP=S△OPE﹣S△DPEPE•xPPE•(xP﹣xD)PE(xP﹣xP+xD)PE•xD=PEt2﹣t
    ∴t2﹣t2
    解得:t1=﹣4(舍去),t2=6
    ∴P(6,﹣6)
    综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.
    (4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L
    ∵KL平分矩形ABCD的面积
    ∴K在线段AB上,L在线段CD上,如图4

    ∴K(m,0),L(2+m,0)
    连接AC,交KL于点H
    ∵S△ACD=S四边形ADLKS矩形ABCD
    ∴S△AHK=S△CHL
    ∵AK∥LC
    ∴△AHK∽△CHL

    ∴AH=CH,即点H为AC中点
    ∴H(4,﹣3)也是KL中点

    ∴m=3
    ∴抛物线平移的距离为3个单位长度.
    相关试卷

    中考数学一轮复习考点提高练习专题34 动态问题(教师版): 这是一份中考数学一轮复习考点提高练习专题34 动态问题(教师版),共26页。试卷主要包含了动态问题概述,动点问题常见的四种类型,解决动态问题一般步骤等内容,欢迎下载使用。

    中考数学一轮复习考点提高练习专题21 菱形(教师版): 这是一份中考数学一轮复习考点提高练习专题21 菱形(教师版),共15页。试卷主要包含了菱形的定义 ,菱形的面积等内容,欢迎下载使用。

    中考数学一轮复习考点提高练习专题20 矩形(教师版): 这是一份中考数学一轮复习考点提高练习专题20 矩形(教师版),共21页。试卷主要包含了矩形的定义,矩形的性质,矩形判定定理,矩形的面积等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map