所属成套资源:【精品同步】九年级上册数学同步培优练习(带答案)
数学22.1 二次函数的图象和性质综合与测试练习
展开
这是一份数学22.1 二次函数的图象和性质综合与测试练习,共15页。试卷主要包含了二次函数与一元二次方程的关系,抛物线与不等式的关系等内容,欢迎下载使用。
22.3用函数观点看一元二次方程
要点一、二次函数与一元二次方程的关系
1.二次函数图象与x轴的交点情况决定一元二次方程根的情况
求二次函数(a≠0)的图象与x轴的交点坐标,就是令y=0,求中x的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x轴的交点的个数,它们的关系如下表:
判别式
二次函数
一元二次方程
图象
与x轴的交点坐标
根的情况
△>0
抛物线与x轴交于,两点,且,
此时称抛物线与x轴相交
一元二次方程
有两个不相等的实数根
△=0
抛物线与x轴交切于这一点,此时称抛物线与x轴相切
一元二次方程
有两个相等的实数根
△<0
抛物线与x轴无交点,此时称抛物线与x轴相离
一元二次方程
在实数范围内无解(或称无实数根)
要点诠释:二次函数图象与x轴的交点的个数由的值来确定的.
(1)当二次函数的图象与x轴有两个交点时,,方程有两个不相等的实根;
(2)当二次函数的图象与x轴有且只有一个交点时,,方程有两个相等的实根;
(3)当二次函数的图象与x轴没有交点时,,方程没有实根.
2.抛物线与直线的交点问题
抛物线与x轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线(a≠0)与y轴交点和二次函数与一次函数的交点问题.
抛物线(a≠0)与y轴的交点是(0,c).
抛物线(a≠0)与一次函数(k≠0)的交点个数由方程组的解的个数决定.
当方程组有两组不同的解时两函数图象有两个交点;
当方程组有两组相同的解时两函数图象只有一个交点;
当方程组无解时两函数图象没有交点.
总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题.
要点诠释:
求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题.
要点二、利用二次函数图象求一元二次方程的近似解
用图象法解一元二次方程的步骤:
1.作二次函数的图象,由图象确定交点个数,即方程解的个数;
2. 确定一元二次方程的根的取值范围.即确定抛物线 与x轴交点的横坐标的大致范围;
3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y值.
4.确定一元二次方程的近似根.在(3)中最接近0的y值所对应的x值即是一元二次方的近似根.
要点诠释:求一元二次方程的近似解的方法(图象法):
(1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根;
(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根;
(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.
要点三、抛物线与x轴的两个交点之间的距离公式
当△>0时,设抛物线与x轴的两个交点为A(,0),B(,0),则、是一元二次方程的两个根.由根与系数的关系得,.
∴
即 (△>0)
要点四、抛物线与不等式的关系
二次函数(a≠0)与一元二次不等式(a≠0)及(a≠0)之间的关系如下:
判别式
抛物线与x轴的交点
不等式的解集
不等式的解集
△>0
或
△=0
(或)
无解
△<0
全体实数
无解
注:a<0的情况请同学们自己完成.
要点诠释:
抛物线在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式的解集.不等式中如果带有等号,其解集也相应带有等号.
类型一、二次函数图象与坐标轴交点
例1、已知函数的图像与轴有交点,则的取值范围是( )
A. B. C.且 D.且
练习1:二次函数y=mx2+(2m-1)x+m+1的图象总在x轴的上方,求m的取值范围。
练习2:小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是( )
A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=4
练习3:抛物线 y=ax2+bx+c(a<0)如图所示,则关于x的不等式 ax2+bx+c>0 的解集是
练习4:二次函数的图象如右图所示,则m的值是( )
A.-8 B.8 C.±8 D.6
例2、二次函数 y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )
A. k<-3 B.k>-3 C.k<3 D.k>3
练习:已知函数 y=x2+2x-3,当 x=m 时,y<0,则m的值可能是( )
A.4 B.0 C.2 D.3
类型二、利用二次函数图象求一元二次方程的解
例3、已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
练习:若二次函数的图像过点(-2,0),则关于x的方程的实数根为
A. B. C. D.
例4、已知一元二次方程 x2+px+q=0(p2-4q≥0)的两根为 x1、x2;
求证:x1+x2=-p,x1•x2=q。
练习:已知抛物线y=x2+px+q 与x轴交于 A、B 两点,且过点(-1,-1),设线段 AB 的长为d,当p为何值时,d2 取得最小值,并求出最小值。
例5、已知抛物线与x轴交于A 、 B两点。
(1)求证:抛物线的对称轴在y轴的左侧;
(2)若(O是坐标原点),求抛物线的解析式;
(3)设抛物线与y轴交于点C,若△ABC是直角三角形,求△ABC的面积
解析:(1)证明抛物线的对称轴0时,x的取值范围是-1≤x
相关试卷
这是一份人教版22.2二次函数与一元二次方程精品课后测评,文件包含第13课用函数观点看一元二次方程教师版docx、第13课用函数观点看一元二次方程学生版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试练习题,共24页。试卷主要包含了1 二次函数的图像与性质,二次函数的概念,二次函数y=ax2的图象的性质,已知二次函数回答下列问题等内容,欢迎下载使用。
这是一份数学九年级上册21.1 一元二次方程达标测试,共25页。