年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    数学九年级上册22.1.3 第1课时 二次函数y=ax2+k的图象和性质2 试卷

    数学九年级上册22.1.3  第1课时  二次函数y=ax2+k的图象和性质2第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.1.1 二次函数第1课时课后测评

    展开

    这是一份初中数学人教版九年级上册22.1.1 二次函数第1课时课后测评,共3页。
    22.1.3  二次函数y=a(x-h)2+k的图象和性质1课时  二次函数y=ax2+k的图象和性质教学目标:  1、使学生能利用描点法正确作出函数y=ax2+b的图象。2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。重点难点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。教学过程: 一、提出问题1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同? 二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?  (画出函数y=2x2和函数y=2x2的图象,并加以比较)  问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?  教学要点  1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。    2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.    3.教师写出解题过程,同学生所画图象进行比较。    解:(1)列表:x-3-2-10123y=x2188202818y=x2+11993l3919    (2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。(图象略)    问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?    教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。    教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。    问题4:函数y=2x2+1和y=2x2的图象有什么联系?    由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。    问题5:现在你能回答前面提出的第2个问题了吗?     让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。    问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?    完成填空:    当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.    以上就是函数y=2x2+1的性质。三、做一做问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?    教学要点    1.在学生画函数图象的同时,教师巡视指导;    2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。    问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?    教学要点    1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);    2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=-2。    问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?    要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。    问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?    [函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]    问题11:这个函数图象有哪些性质?    让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。四、练习: P9 练习1、2、3。五、小结1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?    2.你能说出函数y=ax2+k具有哪些性质?六、作业:1.P19习题26.2  1.(1)     2.选用课时作业优化设计.第一课时作业优化设计    1.分别在同一直角坐标系中,画出下列各组两个二次函数的图象。    (1)y=-2x2与y=-2x2-2;    (2)y=3x2+1与y=3x2-1。    2.在同一直角坐标系内画出下列二次函数的图象,    y=x2,y=x2+2,y=x2-2    观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。  你能说出抛物线y=x2+k的开口方向及对称轴、顶点的位置吗?    3.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y=x2得到抛  物线y=x2+2和y=x2-2?  4.试说出函数y=x2,y=x2+2,y=x2-2的图象所具有的共同性质。 

    相关试卷

    人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时练习题:

    这是一份人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时练习题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学人教版九年级上册22.1.1 二次函数第1课时当堂达标检测题:

    这是一份初中数学人教版九年级上册22.1.1 二次函数第1课时当堂达标检测题,共7页。试卷主要包含了已知抛物线y=ax2+k等内容,欢迎下载使用。

    人教版九年级上册22.1.1 二次函数第1课时课后练习题:

    这是一份人教版九年级上册22.1.1 二次函数第1课时课后练习题,共3页。试卷主要包含了故选C.等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map