广东省佛山市2023届高三二模数学试题
展开广东省佛山市2023届高三二模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合,,则( )
A. B.
C. D.
2.已知的顶点,,,则顶点的坐标为( )
A. B. C. D.
3.记数列的前项和为,则“”是“为等差数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.“基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每所学校至少有一位同学选择的不同方法数共有( )
A.120种 B.180种 C.240种 D.300种
5.科技是一个国家强盛之根,创新是一个民族进步之魂,科技创新铸就国之重器,极目一号(如图1)是中国科学院空天信息研究院自主研发的系留浮空器.2022年5月,“极目一号”III型浮空艇成功完成10次升空大气科学观测,最高升空至9050米,超过珠穆朗玛峰,创造了浮空艇大气科学观测海拔最高的世界纪录,彰显了中国的实力.“极目一号”III型浮空艇长55米,高19米,若将它近似看作一个半球、一个圆柱和一个圆台的组合体,正视图如图2所示,则“极目一号”III型浮空艇的体积约为( )
(参考数据:,,,)
A. B. C. D.
6.已知方程,其中.现有四位同学对该方程进行了判断,提出了四个命题:
甲:可以是圆的方程; 乙:可以是抛物线的方程;
丙:可以是椭圆的标准方程; 丁:可以是双曲线的标准方程.
其中,真命题有( )
A.1个 B.2个 C.3个 D.4个
7.若斜率为1的直线与曲线和圆都相切,则实数的值为( )
A. B.0 C.2 D.0或2
8.已知函数,若存在,,,且,使,则的值为( )
A. B. C. D.
二、多选题
9.设,,为复数,且,下列命题中正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则在复平面对应的点在一条直线上
10.四面体中,,,,,,平面与平面的夹角为,则的值可能为( )
A. B. C. D.
11.如图拋物线的顶点为,焦点为,准线为,焦准距为4;抛物线的顶点为,焦点也为,准线为,焦准距为6.和交于、两点,分别过、作直线与两准线垂直,垂足分别为M、N、S、T,过的直线与封闭曲线交于、两点,则( )
A. B.四边形的面积为100
C. D.的取值范围为
12.已知函数,对于任意的实数,,下列结论一定成立的有( )
A.若,则 B.若,则
C.若,则 D.若,则
三、填空题
13.已知函数有2个极值点,,则______.
14.佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标,且,现从该生产线上随机抽取10片瓷砖,记表示的瓷砖片数,则______.
15.已知、分别为椭圆的左、右焦点,是过椭圆右顶点且与长轴垂直的直线上的动点,则的最大值为______.
四、双空题
16.有个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是______,从第个盒子中取到白球的概率是______.
五、解答题
17.2023年3月5日,国务院总理李克强在政府工作报告中指出“着力扩大消费和有效投资.面对需求不足甚至出现收缩,推动消费尽快恢复.帮扶旅游业发展.围绕补短板、调结构、增后劲扩大有效投资.”某旅游公司为确定接下来五年的发展规划,对2013~2022这十年的国内旅客人数作了初步处理,用和分别表示第年的年份代号和国内游客人数(单位:百万人次),得到下面的表格与散点图.
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
年份代码x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
国内游客数y | 3262 | 3611 | 3990 | 4432 | 5000 | 5542 | 6006 | 2879 | 3246 | 2530 |
(1)2020年~2022年疫情特殊时期,旅游业受到重挫,现剔除这三年的数据,再根据剩余样本数据(,2,3,…,7)建立国内游客人数关于年份代号的一元线性回归模型;
(2)2023年春节期间旅游市场繁荣火爆,预计2023年国内旅游人数约4550百万人次,假若2024年∼2027年能延续2013年∼2019年的增长势头,请结合以上信息预测2027年国内游客人数.
附:回归直线的斜率和截距的最小二乘估计公式分别为:,
参考数据:,
18.已知为锐角三角形,且.
(1)若,求;
(2)已知点在边上,且,求的取值范围.
19.已知各项均为正数的等比数列,其前项和为,满足,
(1)求数列的通项公式;
(2)记为数列在区间中最大的项,求数列的前项和.
20.中国正在由“制造大国”向“制造强国”迈进,企业不仅仅需要大批技术过硬的技术工人,更需要努力培育工人们执着专注、精益求精、一丝不苟、追求卓越的工匠精神,这是传承工艺、革新技术的重要基石.如图所示的一块木料中,是正方形,平面,,点,是,的中点.
(1)若要经过点和棱将木料锯开,在木料表面应该怎样画线,请说明理由并计算截面周长;
(2)若要经过点B,E,F将木料锯开,在木料表面应该怎样画线,请说明理由.
21.双曲线的左顶点为,焦距为4,过右焦点作垂直于实轴的直线交于、两点,且是直角三角形.
(1)求双曲线的方程;
(2)、是右支上的两动点,设直线、的斜率分别为、,若,求点到直线的距离的取值范围.
22.已知函数,其中.
(1)若有两个零点,求的取值范围;
(2)若,求的取值范围.
参考答案:
1.C
【分析】首先求集合,再求.
【详解】,得或,
所以或,,
所以.
故选:C
2.B
【分析】由平行四边形可得进而即得.
【详解】因为,,,由平行四边形可得,
设,则,
所以,即的坐标为.
故选:B.
3.B
【分析】利用等差数列前项和及性质,结合充分条件、必要条件的意义判断作答.
【详解】等差数列的前项和为,则,
数列的前项和为,取,显然有,
而,即数列不是等差数列,
所以“”是“为等差数列”的必要不充分条件.
故选:B
4.C
【分析】按照分组分配的方法,列式求解.
【详解】将5位同学分为2,1,1,1的分组,再分配到4所学校,
共有种方法.
故选:C
5.A
【分析】先根据图2得半球、圆柱底面和圆台一个底面的半径为,而圆台一个底面的半径为,再根据球、圆柱和圆台的体积公式即可求解.
【详解】由图2得半球、圆柱底面和圆台一个底面的半径为(m),而圆台一个底面的半径为(m),
则(m3),
(m3),
(m3),
所以(m3).
故选:A.
6.C
【分析】根据圆,抛物线,椭圆及双曲线的方程特点结合条件分析即得.
【详解】因为方程,其中,
所以当时,方程为,即是圆的方程,故方程可以是圆的方程;
当时,方程为,即是抛物线的方程,故方程可以是抛物线的方程;
当时,方程为,即是椭圆的标准方程,故方程可以是椭圆的标准方程;
若方程为双曲线的标准方程,则有,这与矛盾,故方程不可以是双曲线的标准方程;
所以真命题有3个.
故选:C.
7.D
【分析】设直线与曲线的切点为,先根据导数的几何意义求出在切点处的切线方程,再根据直线与圆相切和圆心到直线距离的关系列式求解即可.
【详解】设直线与曲线的切点为,
由,则,
则,,即切点为,所以直线为,
又直线与圆都相切,则有,解得或.
故选:D.
8.A
【分析】由范围可求出整体的范围,结合的图象,根据对称性即可求出的值.
【详解】
解:令,因为,, ,
所以,, ,,
因为,
结合的图象(如图所示),
得到,或,,
因为,
所以,,
则解得,此时,,,满足题意,
或解得,不符合题意舍去.
故选:.
9.ACD
【分析】根据共轭复数的概念可判断A,利用特值可判断B,根据复数运算法则及复数相等可判断C,根据复数的几何意义结合条件可判断D.
【详解】设,,,
对A, 若,即,则,
所以,,故A正确;
对B,若,则,而,故B错误;
对C,,,
所以,即,
因为,,则至少有一个不为零,
不妨设,由,可得,
所以,,即,,故C正确;
对D,由,可得,
所以,又不全为零,
所以表示一条直线,即在复平面对应的点在一条直线上,故D正确.
故选:ACD.
10.AD
【分析】根据给定条件,利用空间向量数量积运算律求解判断作答.
【详解】在四面体中,,,则是二面角的平面角,如图,
,而,,,
,
因为平面与平面的夹角为,则当时,,
当时,,
所以的值可能为,.
故选:AD
11.ACD
【分析】根据抛物线的定义可得判断A,以为原点建立平面直角坐标系,根据条件可得抛物线的方程为,可得,进而判断B,利用抛物线的定义结合条件可得可判断C,利用抛物线的性质结合焦点弦的性质可判断D.
【详解】设直线与直线分别交于,由题可知,
所以,,故A正确;
如图以为原点建立平面直角坐标系,则,,
所以抛物线的方程为,
连接,由抛物线的定义可知,又,
所以,代入,可得,
所以,又,故四边形的面积为,故B错误;
连接,因为,所以,
所以,
故,故C正确;
根据抛物线的对称性不妨设点在封闭曲线的上部分,设在直线上的射影分别为,
当点在抛物线,点在抛物线上时,,
当与重合时,最小,最小值为,
当与重合,点在抛物线上时,因为,直线,
与抛物线的方程为联立,可得,设,
则,,
所以;
当点在抛物线,点在抛物线上时,设,
与抛物线的方程为联立,可得,设,
则,,当,
即时取等号,故此时;
当点在抛物线,点在抛物线上时,根据抛物线的对称性可知,;
综上,,故D正确.
故选:ACD.
12.ABD
【分析】构造函数利用导数研究函数的单调性一一判定即可.
【详解】,
令在上单调递增,
在上单调递减,故,
所以在上单调递增,且.
对于A项,若,显然B正确;
对于B项,有,
令,令,
在R上单调递增,而,
故在上单调递增,在上单调递减,故,
所以,故A正确;
对于D项,若,
即,故D正确;
设,若,则满足,
但,故C错误.
故选:ABD
13.0
【分析】由得,然后根据函数解析式结合条件即得.
【详解】因为函数有两个极值点与
由,则的两根为与,
所以,即,
由,可得,
所以.
故答案为:0.
14.1
【分析】利用正态分布的对称性可得,结合条件可得,然后利用二项分布的期望公式即得.
【详解】因为,均值为,且,
所以,
由题可得,所以.
故答案为:1.
15./
【分析】设点在直线上,设点,当时,求出的值,当点不为长轴端点时,设,设直线、的倾斜角分别为、,可求出关于的表达式,利用基本不等式可求得的最大值,可得出的最大值,即可求得的最大值.
【详解】不妨设点在直线上,
若点为,则,
当点不为长轴端点时,由对称性,不妨设点在第一象限,设点,
在椭圆中,,,,则点、,
设直线、的倾斜角分别为、,则,,
所以,,
当且仅当时,即当时,等号成立,所以,的最大值为,
所以,.
故答案为:
16.
【分析】记事件表示从第i个盒子里取出白球,利用全概率公式可得,进而可得,然后构造等比数列,求通项公式即得.
【详解】记事件表示从第个盒子里取出白球,则,,
所以,
,
,
进而可得,,
又,,,
所以是首项为,公比为的等比数列,
所以,即,
故答案为:;.
17.(1);
(2)6422百万人次.
【分析】(1)利用最小二乘法结合条件可得回归方程;
(2)根据线性回归方程,结合条件即得.
【详解】(1)由题可得,
,
,
所以,
,
所以根据样本数据(,2,3,…,7)建立一元线性回归模型为;
(2)由可知,年份每增加1年国内旅游人数将增加468百万人次,
所以预测2027年国内游客人数为百万人次.
18.(1);
(2).
【分析】(1)利用三角恒等变换可得,再利用三角函数的性质结合条件即得;
(2)利用正弦定理结合条件可得,然后根据条件及三角函数的性质即可求得其范围.
【详解】(1)因为,
所以,即,
又,,
所以,
所以,即,又,,
所以,即;
(2)因为,所以,又,
可得,
在中,,
所以,
在中,,
因为为锐角三角形,
所以,得,
所以,
所以,即的取值范围为.
19.(1);
(2).
【分析】(1)由题可得,然后利用等比数列的基本量运算即得;
(2)根据条件可得,进而可得,然后利用分组求和法即得.
【详解】(1)设的公比为,则,又,
当时,,当时,,
两式相减可得,,所以,
所以或(舍去),
所以,即,
所以等比数列的通项公式为;
(2)由,,可得,
所以,又,
所以,当且仅当时等号成立,
所以,
所以,
所以.
即.
20.(1)详见解析;
(2)详见解析.
【分析】(1)根据线面平行的判定定理可得平面,设的中点为,根据线面平行的性质可得就是应画的线,然后根据线面垂直的判定定理结合条件可得截面周长;
(2)建立空间直角坐标系,可得平面的法向量,设平面,根据线面垂直的性质可得的位置,进而即得.
【详解】(1)因为平面,平面,
所以平面,又平面,
设平面平面,则,
设的中点为,连接,则,又,
所以,即为,就是应画的线,
因为平面,平面,
所以,又,,平面,
所以平面,平面,
所以,即截面为直角梯形,又,
所以,,
所以,截面周长为;
(2)以点为坐标原点,,,分别为,,轴的正向建立空间直角坐标系,
则,,,,,,,
所以,
设平面的法向量为,
则,令,可得,
设平面,设,又,
∴,,
由,可得,即,
即为的三等分点,连接,即就是应画的线.
21.(1)
(2)
【分析】(1)根据等腰直角三角形的性质,转化为的方程,即可求解;
(2)首先设直线的方程为,与双曲线方程联立,利用韦达定理表示,并根据的取值范围,求点到直线的距离的取值范围.
【详解】(1)依题意,,焦半径,
由,得,得,
解得:(其中舍去),
所以,
故双曲线的方程为;
(2)显然直线不可能与轴平行,故可设直线的方程为,
联立,消去整理得,
在条件下,设,,
则,,
由,得,
即,
整理得,
代入韦达定理得,,
化简可消去所有的含的项,解得:或(舍去),
则直线的方程为,得,
又都在双曲线的右支上,故有,,
此时,,
所以点到直线的距离的取值范围为.
22.(1);
(2).
【分析】(1)由题可得方程有两个解,然后构造函数利用导数研究函数的性质进而即得;
(2)由题知恒成立,进而转化为证明当时,然后利用二次函数的性质结合条件可得只需证明即可,再构造函数利用导数证明不等式即得.
【详解】(1)由有两个零点,得方程有两个解,
设,则,
由,可得,单调递增,由,可得,单调递减,
所以的最大值为,当时,当时,,
所以可得函数的大致图象,
所以,解得,
所以,有两个零点时,的取值范围是;
(2)设,即,则恒成立,
由,,可得,
下面证明当时,,即证,
令,则证,,
令为开口向上的二次函数,对称轴为,
由(1)可知,故在时单调递增,
则,
下面只需证明即可,即证,
令,则,
令,则,
所以函数单调递减,且,
所以当时,,当时,,
所以函数在上单调递增,在上单调递减,
故,即,从而不等式得证,
综上,的取值范围是.
【点睛】方法点睛:利用导数证明不等式问题,方法如下:
(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;
(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.
2023届广东省佛山市高三二模数学试题含解析: 这是一份2023届广东省佛山市高三二模数学试题含解析,共20页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
2023届广东省佛山市高三二模数学试题: 这是一份2023届广东省佛山市高三二模数学试题,文件包含2023-04-17佛山二模数学试卷pdf、佛山二模答案pdf、广东省佛山市普通高中2022-2023学年高三下学期教学质量检测二数学试题pdf等3份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
2023届广东省佛山市高三二模数学试题及答案: 这是一份2023届广东省佛山市高三二模数学试题及答案,文件包含2023-04-17佛山二模数学试卷pdf、佛山二模答案pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。