- 中考数学三轮冲刺考前过关练习卷05(教师版) 试卷 0 次下载
- 中考数学三轮冲刺考前过关练习卷06(教师版) 试卷 0 次下载
- 中考数学三轮冲刺考前过关练习卷07(教师版) 试卷 0 次下载
- 中考数学三轮冲刺考前过关练习卷08(教师版) 试卷 0 次下载
- 中考数学三轮冲刺考前过关练习卷09(教师版) 试卷 0 次下载
中考数学三轮冲刺考前过关练习卷10(教师版)
展开考前必刷10
一、选择题:
1、已知4m=a,8n=b,其中m,n为正整数,则22m+6n=( )
A. B. C. D.
{答案}A
{解析}本题考查了幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.
∵4m=a,8n=b,
∴22m+6n=22m×26n=(22)m•(23)2n =4m•82n =4m•(8n)2 =ab2,
因此本题选A.
2、公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=( )
A. B. C. D.
{答案}A
{解析}本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,
∵大正方形的面积是125,小正方形面积是25,
∴大正方形的边长为5,小正方形的边长为5,
∴5cosθ-5sinθ=5,
∴cosθ-sinθ=,
∴(sinθ-cosθ)2=.
因此本题选A.
3、把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为( )[来源:Z#xx#k.Com]
A. B. C. D.
【解答】解:
如图,设BC=x,则CE=1﹣x
易证△ABC∽△FEC
∴===
解得x=
∴阴影部分面积为:S△ABC=××1=
故选:A.
4、如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( )
A. B. C. D.
【解答】解:如图,
∵∠ADC=∠HDF=90°
∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°
∴△CDM≌△HDN(ASA)
∴MD=ND,且四边形DNKM是平行四边形
∴四边形DNKM是菱形
∴KM=DM
∵sinα=sin∠DMC=
∴当点B与点E重合时,两张纸片交叉所成的角a最小,
设MD=a=BM,则CM=8﹣a,
∵MD2=CD2+MC2,
∴a2=4+(8﹣a)2,
∴a=
∴CM=
∴tanα=tan∠DMC==
故选:D.
二、填空题:
5、如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是 () .
【解答】解:如图,
∵△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,
∴CH=1,
∴AH=,
∵∠ABO=∠DCH=30°,
∴DH=AO=,
∴OD=﹣﹣=,
∴点D的坐标是(,0).
故答案为:(,0).
6、如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是 25π﹣48 (结果保留π).
【解答】解:连接OC,
∵∠AOB=90°,四边形ODCE是平行四边形,
∴▱ODCE是矩形,
∴∠ODC=90°.
∵OD=8,OE=6,
∴OC=10,
∴阴影部分图形的面积=﹣8×6=25π﹣48.
故答案为:25π﹣48.[来源:学科网ZXXK]
7、如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 .
(第7题图)
{答案}或
{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴=,即=,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=.∵AD=BD=13,DQ⊥AB,∴AQ=AB=,
∴DQ==,∵∠AFP=∠AQD=90°,∠PAF=∠DAQ,∴△APF∽△ADQ,∴=,即=,得:AP=.综上所述,AP的值为或.
图(1) 图(2)
8、如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为 4和2.56 .
【解答】解:∵过B点的切线交AC的延长线于点D,
∴AB⊥BD,
∴AB===8,
当∠AEP=90°时,∵AE=EC,
∴EP经过圆心O,
∴AP=AO=4;
当∠APE=90°时,则EP∥BD,
∴=,
∵DB2=CD•AD,
∴CD===3.6,
∴AC=10﹣3.6=6.4,
∴AE=3.2,
∴=,
∴AP=2.56.
综上AP的长为4和2.56.
故答案为4和2.56.
三、解答题:
9、如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.
(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.
①求证:CD=CE,CD⊥CE;
②求证:AD+BD=CD;
(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.
【分析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;
②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;
(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC=∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.
【解答】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,[来源:学科网]
∵∠ADB+∠ACB=180°,
∴∠DAC+∠DBC=180°,
∵∠EAC+∠DAC=180°,
∴∠DBC=∠EAC,
∵BD=AE,BC=AC,
∴△BCD≌△ACE(SAS),
∴CD=CE,∠BCD=∠ACE,
∵∠BCD+∠DCA=90°,
∴∠ACE+∠DCA=90°,
∴∠DCE=90°,
∴CD⊥CE;
②∵CD=CE,CD⊥CE,
∴△CDE是等腰直角三角形,
∴DE=CD,
∵DE=AD+AE,AE=BD,[来源:Zxxk.Com]
∴DE=AD+BD,
∴AD+BD=CD;
(2)解:AD﹣BD=CD;
理由:如图2,在AD上截取AE=BD,连接CE,
∵AC=BC,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵∠ADB=90°,
∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,
∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,
∴∠CBD=∠CAE,∵BD=AE,BC=AC,
∴△CBD≌△CAE(SAS),
∴CD=CE,∠BCD=∠ACE,
∵∠ACE+∠BCE=∠ACB=90°,
∴∠BCD+∠BCE=90°,
即∠DCE=90°,
∴DE===CD,[来源:学科网ZXXK]
∵DE=AD﹣AE=AD﹣BD,
∴AD﹣BD=CD.
10、如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.
(1)求证:MF是⊙O的切线;
(2)若CN=3,BN=4,求CM的长.
【解答】证明:(1)连接OM,
∵OM=OB,
∴∠OMB=∠OBM,
∵BM平分∠ABD,
∴∠OBM=∠MBF,
∴∠OMB=∠MBF,
∴OM∥BF,
∵MF⊥BD,
∴OM⊥MF,即∠OMF=90°,
∴MF是⊙O的切线;
(2)如图,连接AN,ON
∵=,
∴AN=BN=4
∵AB是直径,=,
∴∠ANB=90°,ON⊥AB
∴AB==4
∴AO=BO=ON=2
∴OC===1
∴AC=2+1,BC=2﹣1
∵∠A=∠NMB,∠ANC=∠MBC
∴△ACN∽△MCB
∴
∴AC•BC=CM•CN
∴7=3•CM
∴CM=
中考数学三轮冲刺考前过关练习卷09(教师版): 这是一份中考数学三轮冲刺考前过关练习卷09(教师版),共8页。试卷主要包含了下列说法错误的是,若关于x的一元二次方程,如图,点A等内容,欢迎下载使用。
中考数学三轮冲刺考前过关练习卷08(教师版): 这是一份中考数学三轮冲刺考前过关练习卷08(教师版),共6页。试卷主要包含了计算+++++……+的值为等内容,欢迎下载使用。
中考数学三轮冲刺考前过关练习卷07(教师版): 这是一份中考数学三轮冲刺考前过关练习卷07(教师版),共8页。试卷主要包含了观察下列等式,如图等内容,欢迎下载使用。