终身会员
搜索
    上传资料 赚现金
    2023年辽宁省抚顺市清原县中考数学一模试卷
    立即下载
    加入资料篮
    2023年辽宁省抚顺市清原县中考数学一模试卷01
    2023年辽宁省抚顺市清原县中考数学一模试卷02
    2023年辽宁省抚顺市清原县中考数学一模试卷03
    还剩35页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年辽宁省抚顺市清原县中考数学一模试卷

    展开
    这是一份2023年辽宁省抚顺市清原县中考数学一模试卷,共38页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    2023年辽宁省抚顺市清原县中考数学一模试卷
    一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共30分)
    1.(3分)如图,是由6个相同的正方体组成的立体图形,它的俯视图是(  )

    A. B.
    C. D.
    2.(3分)(北师大版)如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是(  )

    A. B. C. D.
    3.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是(  )

    A.12sinα米 B.12cosα米 C.米 D.米
    4.(3分)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为(  )

    A.4.25πm2 B.3.25πm2 C.3πm2 D.2.25πm2
    5.(3分)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是(  )

    A. B.1 C. D.
    6.(3分)某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    7.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为(  )

    A. B. C. D.4
    8.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为(  )
    A.或4 B.或﹣ C.﹣或4 D.﹣或4
    9.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是(  )

    A.BE=DE B.DE垂直平分线段AC
    C. D.BD2=BC•BE
    10.(3分)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是(  )

    A.
    B.
    C.
    D.
    二、填空题(每小题3分,共24分)
    11.(3分)方程(x+1)2=9的根是   .
    12.(3分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是    .

    13.(3分)一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为    .
    摸球的总次数a
    100
    500
    1000
    2000

    摸出红球的次数b
    19
    101
    199
    400

    摸出红球的频率
    0.190
    0.202
    0.199
    0.200

    14.(3分)如图,已知Rt△ABC中,斜边BC上的高AD=4,,则CD=   .

    15.(3分)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为    .

    16.(3分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为    .(结果保留π)

    17.(3分)一副三角板按图1放置,O是边BC(DF)的中点,BC=20cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是    .


    18.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP,则下列结论:
    ①AE⊥BF;
    ②∠OPA=45°;
    ③;
    ④若BE:CE=2:3,则 ;
    ⑤四边形OECF的面积是正方形ABCD面积的.
    其中正确的结论是    .

    三、(19题10分,20题12分,共22分)
    19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别是A(4,8),B(4,4),C(10,4),△A1B1C1与△ABC关于原点O位似,A,B,C的对应点分别为A1,B1,C1,其中B1的坐标是(2,2).
    (1)△A1B1C1和△ABC的相似比是    ;
    (2)请画出△A1B1C1;
    (3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是    ;
    (4)△A1B1C1的面积是    .

    20.(12分)据网站调查,2022年网民们关注的热点话题分别有:消费、教育、环保、反腐及其他共五类,根据调查的部分相关数据,绘制的统计图表如图:

    (1)求出共调查了多少人,并补全条形统计图;
    (2)若某市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
    (3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四大中随机抽取两人进行座谈,试用列表法或树形图的方法抽取的两人恰好是甲和乙的概率.
    四、(每小题12分,共24分)
    21.(12分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
    (1)求k的值;
    (2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.

    22.(12分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
    (1)求灯管支架底部距地面高度AD的长(结果保留根号);
    (2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).

    五、(本题12分)
    23.(12分)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值.

    六、(本题12分)
    24.(12分)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
    (1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
    (2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
    七、(本题12分)
    25.(12分)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
    (1)如图1,当==1时,请直接写出线段BE与线段DG的数量关系与位置关系;
    (2)如图2,当==2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
    (3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=,∠AEB=45°,请直接写出△MND的面积.


    八、(本题14分)
    26.(14分)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
    (1)求抛物线的解析式;
    (2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
    (3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.



    2023年辽宁省抚顺市清原县中考数学一模试卷
    (参考答案)
    一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共30分)
    1.(3分)如图,是由6个相同的正方体组成的立体图形,它的俯视图是(  )

    A. B.
    C. D.
    【解答】解:从上边看,底层左边是两个小正方形,上层是三个小正方形.
    故选:C.
    2.(3分)(北师大版)如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是(  )

    A. B. C. D.
    【解答】解:由于所有机会均等的结果为6种,而出现“自”的机会有3种,
    所以出现“自”的概率为.
    故选:A.
    3.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是(  )

    A.12sinα米 B.12cosα米 C.米 D.米
    【解答】解:Rt△ABC中,sinα=,
    ∵AB=12米,
    ∴BC=12sinα(米).
    故选:A.
    4.(3分)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为(  )

    A.4.25πm2 B.3.25πm2 C.3πm2 D.2.25πm2
    【解答】解:S阴=S扇形DOA﹣S扇形BOC
    =﹣
    =2.25πm2.
    故选:D.
    5.(3分)如图,在矩形ABCD中,AB=6,AD=4,点E、F分别为BC、CD的中点,BF、DE相交于点G,过点E作EH∥CD,交BF于点H,则线段GH的长度是(  )

    A. B.1 C. D.
    【解答】解:∵四边形ABCD是矩形,AB=6,AD=4,
    ∴DC=AB=6,BC=AD=4,∠C=90°,
    ∵点E、F分别为BC、CD的中点,
    ∴DF=CF=DC=3,CE=BE=BC=2,
    ∵EH∥CD,
    ∴FH=BH,
    ∵BE=CE,
    ∴EH=CF=,
    由勾股定理得:BF===5,
    ∴BH=FH=BF=,
    ∵EH∥CD,
    ∴△EHG∽△DFG,
    ∴,
    ∴=,
    解得:GH=,
    故选:A.
    6.(3分)某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    【解答】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=3×7×5,
    故选:D.
    7.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为(  )

    A. B. C. D.4
    【解答】解:作MN⊥x轴于N,
    ∵P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,
    ∴P(,2),
    ∴PQ=2,
    ∵将线段QP绕点Q顺时针旋转60°得到线段QM.
    ∴QM=QP=2,∠PQM=60°,
    ∴∠MQN=90°﹣60°=30°,
    ∴MN=QM=1,
    ∴QN==,
    ∴M(+,1),
    ∵点M也在该反比例函数的图象上,
    ∴k=+,
    解得k=2,
    故选:C.

    8.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为(  )
    A.或4 B.或﹣ C.﹣或4 D.﹣或4
    【解答】解:y=a(x﹣1)2﹣a的对称轴为直线x=1,
    顶点坐标为(1,﹣a),
    当a>0时,在﹣1≤x≤4,函数有最小值﹣a,
    ∵y的最小值为﹣4,
    ∴﹣a=﹣4,
    ∴a=4;
    当a<0时,在﹣1≤x≤4,当x=4时,函数有最小值,
    ∴9a﹣a=﹣4,
    解得a=﹣;
    综上所述:a的值为4或﹣,
    故选:D.
    9.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是(  )

    A.BE=DE B.DE垂直平分线段AC
    C. D.BD2=BC•BE
    【解答】解:由题意可得∠ABC=90°,∠C=30°,AB=AD,AP为BD的垂直平分线,
    ∴BE=DE,
    ∴∠BAE=∠DAE=30°,
    ∴△AEC是等腰三角形,
    ∵AB=AD,AC=2AB,
    ∴点D为AC的中点,
    ∴DE垂直平分线段AC,
    故选项A,B正确,不符合题意;
    在△ABC和△EDC中,∠C=∠C,∠ABC=∠EDC=90°,
    ∴△ABC∽△EDC,
    ∴,
    ∵,DC=,
    ∴,
    ∴,
    ∴,故选项C错误,符合题意;
    在△ABD中,∵AB=AD,∠BAD=60°,
    ∴△ABD是等边三角形,
    ∴∠ABD=∠ADB=60°,
    ∴∠DBE=∠BDE=30°,
    在△BED和△BDC中,∠DBC=∠EBD=30°,∠BDE=∠C=30°,
    ∴△BED∽△BDC,
    ∴,
    ∴BD2=BC•BE,故选项D正确,不符合题意.
    故选:C.
    10.(3分)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是(  )

    A.
    B.
    C.
    D.
    【解答】解:过点A作AM⊥BC,交BC于点M,

    在等边△ABC中,∠ACB=60°,
    在Rt△DEF中,∠F=30°,
    ∴∠FED=60°,
    ∴∠ACB=∠FED,
    ∴AC∥EF,
    在等边△ABC中,AM⊥BC,
    ∴BM=CM=BC=2,AM=BM=2,
    ∴S△ABC=BC•AM=4,
    ①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,

    由题意可得CD=x,DG=x
    ∴S=CD•DG=x2;
    ②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,

    由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),
    ∴S=S△ABC﹣S△BDG=4﹣×(4﹣x)×(4﹣x),
    ∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,
    ③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,
    此时△ABC与Rt△DEF重叠部分为△BEG,

    由题意可得CD=x,则CE=x﹣4,DB=x﹣4,
    ∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,
    ∴BM=4﹣x
    在Rt△BGM中,GM=(4﹣x),
    ∴S=BE•GM=(8﹣x)×(4﹣x),
    ∴S=(x﹣8)2,
    综上,选项A的图象符合题意,
    故选:A.
    二、填空题(每小题3分,共24分)
    11.(3分)方程(x+1)2=9的根是 x1=2,x2=﹣4 .
    【解答】解:(x+1)2=9,
    x+1=±3,
    x1=2,x2=﹣4.
    故答案为:x1=2,x2=﹣4.
    12.(3分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是   .

    【解答】解:由图可知,
    指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,
    ∴这个数是一个奇数的概率是,
    故答案为:.
    13.(3分)一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为  20 .
    摸球的总次数a
    100
    500
    1000
    2000

    摸出红球的次数b
    19
    101
    199
    400

    摸出红球的频率
    0.190
    0.202
    0.199
    0.200

    【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.2,
    ∴=0.2,
    解得:m=20.
    经检验m=20是原方程的解,
    故答案为:20.
    14.(3分)如图,已知Rt△ABC中,斜边BC上的高AD=4,,则CD= 3 .

    【解答】解:∵△ABC为直角三角形,AD⊥BC,
    ∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,
    ∴∠B=∠CAD,则,
    ∴,
    ∵AD=4,
    ∴AC=5,
    根据勾股定理可得:,
    故答案为:3.
    15.(3分)如图,A,B是双曲线y=(x>0)上的两点,连接OA,OB.过点A作AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,2),则m的值为  6 .

    【解答】解:因为D为AC的中点,△AOD的面积为3,
    所以△AOC的面积为6,
    所以k=12=2m.
    解得:m=6.
    故答案为:6.
    16.(3分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为  400π .(结果保留π)

    【解答】解:如图,连接OB,过点O作OD⊥AB于D,
    ∵OD⊥AB,OD过圆心,AB是弦,
    ∴AD=BD=AB=(AC+BC)=×(11+21)=16,
    ∴CD=BC﹣BD=21﹣16=5,
    在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,
    在Rt△BOD中,OB2=OD2+BD2=144+256=400,
    ∴S⊙O=π×OB2=400π,
    故答案为:400π.

    17.(3分)一副三角板按图1放置,O是边BC(DF)的中点,BC=20cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是  (5﹣5)cm .


    【解答】解:如图所示,BC交EF于点N,

    由题意得,∠EGF=∠BAC=90°,∠DEF=60°,∠DFE=30°,∠ABC=∠ACB=45°,BC=DF=20cm,
    根据点O是边BC(DF)的中点,可得:BO=OC=DO=FO=10cm
    ∵△ABC绕点O顺时针旋转60°,∠DFE=30°,
    ∴∠BOD=NOF=60°,
    ∴∠NOF+∠F=90°,
    ∴∠FNO=180°﹣∠NOF﹣∠F=90°,
    ∴△ONF是直角三角形,
    ∴ON=OF=5cm,
    ∴FN==5,NC=OC﹣ON=5cm,
    ∵∠FNO=90°,∠ACB=45°,
    ∴∠GNC=180°﹣∠FNO=90°,
    ∴△CNG是直角三角形,
    ∴∠NGC=180°﹣∠GNC﹣∠ACB=45°,
    ∴△CNG是等腰直角三角形,
    ∴NG=NC=5cm,
    ∴FG=FN﹣NG=(5﹣5)cm,
    故答案为:(5﹣5)cm.

    18.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP,则下列结论:
    ①AE⊥BF;
    ②∠OPA=45°;
    ③;
    ④若BE:CE=2:3,则 ;
    ⑤四边形OECF的面积是正方形ABCD面积的.
    其中正确的结论是  ①②③⑤ .

    【解答】解:①∵四边形ABCD 是正方形,
    ∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.
    ∴∠BOE+∠EOC=90°,
    ∵OE⊥OF,
    ∴∠FOC+∠EOC=90°.
    ∴∠BOE=∠COF.
    在△BOE和△COF中,

    ∴△BOE≌△COF(ASA),
    ∴BE=CF.
    在△BAE和△CBF中,

    ∴△BAE≌△CBF(SAS),
    ∴∠BAE=∠CBF.
    ∵∠ABP+∠CBF=90°,
    ∴∠ABP+∠BAE=90°,
    ∴∠APB=90°.
    ∴AE⊥BF.
    ∴①的结论正确;
    ②∵∠APB=90°,∠AOB=90°,
    ∴点A,B,P,O四点共圆,
    ∴∠APO=∠ABO=45°,
    ∴②的结论正确;
    ③过点O作OH⊥OP,交AP于点H,如图,

    ∵∠APO=45°,OH⊥OP,
    ∴OH=OP=HP,
    ∴HP=OP.
    ∵OH⊥OP,
    ∴∠POB+∠HOB=90°,
    ∵OA⊥OB,
    ∴∠AOH+∠HOB=90°.
    ∴∠AOH=∠BOP.
    ∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,
    ∴∠OAH=∠OBP.
    在△AOH和△BOP中,

    ∴△AOH≌△BOP(ASA),
    ∴AH=BP.
    ∴AP﹣BP=AP﹣AH=HP=OP.
    ∴③的结论正确;
    ④∵BE:CE=2:3,
    ∴设BE=2x,则CE=3x,
    ∴AB=BC=5x,
    ∴AE==x.
    过点E作EG⊥AC于点G,如图,

    ∵∠ACB=45°,
    ∴EG=GC=EC=x,
    ∴AG==x,
    在Rt△AEG中,
    ∵tan∠CAE=,
    ∴tan∠CAE==.
    ∴④的结论不正确;
    ⑤∵四边形ABCD 是正方形,
    ∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,
    ∴△OAB≌△OBC≌△OCD≌△DOA(SAS).
    ∴S△OBC=S正方形ABCD.
    ∴S△BOE+S△OEC=S正方形ABCD.
    由①知:△BOE≌△COF,
    ∴S△OBE=S△OFC,
    ∴S△OEC+S△OFC=S正方形ABCD.
    即四边形OECF的面积是正方形ABCD面积的.
    ∴⑤的结论正确.
    综上,①②③⑤的结论正确.
    故答案为:①②③⑤.
    三、(19题10分,20题12分,共22分)
    19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别是A(4,8),B(4,4),C(10,4),△A1B1C1与△ABC关于原点O位似,A,B,C的对应点分别为A1,B1,C1,其中B1的坐标是(2,2).
    (1)△A1B1C1和△ABC的相似比是   ;
    (2)请画出△A1B1C1;
    (3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是  (a,b) ;
    (4)△A1B1C1的面积是  3 .

    【解答】解:(1)△A1B1C1和△ABC的相似比是;
    故答案为:;

    (2)如图所示:△A1B1C1即为所求;

    (3)BC边上有一点M(a,b),在B1C1边上与点M对应点的坐标是(a,b);
    故答案为:(a,b);

    (4)△A1B1C1的面积是:×2×3=3.
    故答案为:3.

    20.(12分)据网站调查,2022年网民们关注的热点话题分别有:消费、教育、环保、反腐及其他共五类,根据调查的部分相关数据,绘制的统计图表如图:

    (1)求出共调查了多少人,并补全条形统计图;
    (2)若某市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
    (3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四大中随机抽取两人进行座谈,试用列表法或树形图的方法抽取的两人恰好是甲和乙的概率.
    【解答】解:(1)调查的总人数是:420÷30%=1400(人),
    关注教育的人数是:1400×25%=350(人).

    答:共调查了1400人.
    (2)880×10%=88(万人),
    答:最关注环保问题的人数约为88万人.
    (3)画树形图得:

    ∴一共有12种等可能的情况,其中抽取两人恰好是甲和乙的情况数有2种,
    ∴P(抽取的两人恰好是甲和乙)=.
    四、(每小题12分,共24分)
    21.(12分)如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.
    (1)求k的值;
    (2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.

    【解答】解:(1)∵点C(3,2)在反比例函数y=的图象上,
    ∴=2,
    解得:k=6;
    (2)∵点C(3,2)是线段AB的中点,
    ∴点A的纵坐标为4,
    ∴点A的横坐标为:=,
    ∴点A的坐标为(,4),
    设直线AC的解析式为:y=ax+b,
    则,
    解得:,
    ∴直线AC的解析式为:y=﹣x+6,
    当y=0时,x=,
    ∴OB=,
    ∵点C是线段AB的中点,
    ∴S△AOC=S△AOB=×××4=.
    22.(12分)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:
    (1)求灯管支架底部距地面高度AD的长(结果保留根号);
    (2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).

    【解答】解:(1)在Rt△DAE中,∠AED=60°,AE=3m,
    ∴AD=AE•tan60°=3(米),
    ∴灯管支架底部距地面高度AD的长为3米;
    (2)延长FC交AB于点G,

    ∵∠DAE=90°,∠AFC=30°,
    ∴∠DGC=90°﹣∠AFC=60°,
    ∵∠GDC=60°,
    ∴∠DCG=180°﹣∠GDC﹣∠DGC=60°,
    ∴△DGC是等边三角形,
    ∴DC=DG,
    ∵AE=3米,EF=8米,
    ∴AF=AE+EF=11(米),
    在Rt△AFG中,AG=AF•tan30°=11×=(米),
    ∴DC=DG=AG﹣AD=﹣3=≈1.2(米),
    ∴灯管支架CD的长度约为1.2米.

    五、(本题12分)
    23.(12分)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
    (1)求证:CD是⊙O的切线;
    (2)求sin∠FHG的值.

    【解答】(1)证明:连接OF,
    ∵OA=OF,
    ∴∠OAF=∠OFA,,
    ∴∠CAF=∠OAF,
    ∴∠CAF=∠AFO,
    ∴OF∥AC,
    ∴∠C=∠OFD,
    ∵AC⊥CD,∠C=90°=∠OFD,
    ∴OF⊥CD,
    ∵OF是半径,
    ∴CD是⊙O的切线;
    (2)解:∵AB是直径,∠AFB=90°,
    ∵OF⊥CD,∠AFO=90°﹣∠OFB=∠DFB,
    ∴∠AFO=∠DFB,
    ∵∠OAF=∠OFA,
    ∴∠DFB=∠OAF,
    ∵GD平分∠ADF,
    ∴∠ADG=∠FDG,
    ∵∠FGH=∠OAF+∠ADG,∠FHG=∠DFB+∠FDG,
    ∴∠FGH=∠FHG=45°,
    ∴sin∠FHG=.

    六、(本题12分)
    24.(12分)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:
    (1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;
    (2)当批发价定为多少时,每天所获利润最大?最大利润是多少?
    【解答】解:(1)根据题意得y=12﹣2(x﹣4)=﹣2x+20(4≤x≤5.5),
    所以每天销量y(吨)与批发价x(千元/吨)之间的函数关系式y=﹣2x+20,
    自变量x的取值范围是4≤x≤5.5;
    (2)设每天获得的利润为W千元,根据题意得w=(﹣2x+20)(x﹣2)=﹣2x2+24x﹣40=﹣2(x﹣6)2+32,
    ∵﹣2<0,
    ∴当x<6,w随x的增大而增大.
    ∵4≤x≤5.5,
    ∴当x=5.5时,w有最大值,最大值为﹣2×(5.5﹣6)2+32=31.5,
    ∴将批发价定为5.5千元时,每天获得的利润最大,最大利润是31.5千元.
    七、(本题12分)
    25.(12分)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
    (1)如图1,当==1时,请直接写出线段BE与线段DG的数量关系与位置关系;
    (2)如图2,当==2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
    (3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=,∠AEB=45°,请直接写出△MND的面积.


    【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,
    ∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
    ∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,
    ∴∠BAE=∠DAG,
    ∴△BAE≌△DAG(SAS),
    ∴BE=DG,∠ABE=∠ADG,
    ∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
    ∴∠BDG=90°,
    ∴BE⊥DG;
    (2)BE=,BE⊥DG,理由如下:
    由(1)得:∠BAE=∠DAG,
    ∵==2,
    ∴△BAE∽△DAG,
    ∴,∠ABE=∠ADG,
    ∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
    ∴∠BDG=90°,
    ∴BE⊥DG;
    (3)如图,

    当B在线段BD上时,
    作AH⊥BD于H,
    ∵tan∠ABD=,
    ∴设AH=2x,BH=x,
    在Rt△ABH中,
    x2+(2x)2=()2,
    ∴BH=1,AH=2,
    在Rt△AEH中,
    ∵tan∠AEB=,
    ∴,
    ∴EH=AH=2,
    ∴BE=BH+EH=3,
    ∵BD==5,
    ∴DE=BD﹣BE=5﹣3=2,
    由(2)得:,DG⊥BE,
    ∴DG=2BE=6,
    ∴S△BEG===9,
    在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,
    ∴DM=GM=,
    ∵NM=NM,
    ∴△DMN≌△GMN(SSS),
    ∵MN是△BEG的中位线,
    ∴MN∥BE,
    ∴△BEG∽△MNG,
    ∴=()2=,
    ∴S△MND=S△MNG=S△BEG=,
    如图,

    同上可得:BE=EH﹣BH=2﹣1=1,
    DG=2BE=2,
    ∴=1,
    ∴S△BEG=,
    综上所述:△DMN的面积是或.
    八、(本题14分)
    26.(14分)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
    (1)求抛物线的解析式;
    (2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
    (3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.


    【解答】解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为:y=﹣2x2+2x+4;
    (2)△POD不可能是等边三角形,理由如下:
    如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,

    ∵C(0,4),D是OC的中点,
    ∴E(0,1),
    当y=1时,﹣2x2+2x+4=1,
    2x2﹣2x﹣3=0,
    解得:x1=,x2=(舍),
    ∴P(,1),
    ∴OD≠PD,
    ∴△POD不可能是等边三角形;
    (3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,
    分两种情况:
    ①如图2,△CMP∽△BMH,

    ∴∠PCM=∠OBC,∠BHM=∠CPM=90°,
    ∴tan∠OBC=tan∠PCM,
    ∴====2,
    ∴PM=2PC=2t,MH=2BH=2(2﹣t),
    ∵PH=PM+MH,
    ∴2t+2(2﹣t)=﹣2t2+2t+4,
    解得:t1=0,t2=1,
    ∴P(1,4);
    ②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,

    过点P作PE⊥y轴于E,
    ∴∠PEC=∠BOC=∠PCM=90°,
    ∴∠PCE+∠EPC=∠PCE+∠BCO=90°,
    ∴∠BCO=∠EPC,
    ∴△PEC∽△COB,
    ∴=,
    ∴=,
    解得:t1=0(舍),t2=,
    ∴P(,);
    综上,点P的坐标为(1,4)或(,).

    相关试卷

    2022-2023学年辽宁省抚顺市清原县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年辽宁省抚顺市清原县九年级(上)期末数学试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省抚顺市清原县中考数学二模试卷(含解析): 这是一份2023年辽宁省抚顺市清原县中考数学二模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省抚顺市清原县中考数学三模试卷(含解析): 这是一份2023年辽宁省抚顺市清原县中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map