终身会员
搜索
    上传资料 赚现金

    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷

    立即下载
    加入资料篮
    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷第1页
    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷第2页
    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷第3页
    还剩19页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷

    展开

    这是一份江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    2022-2023学年江苏省无锡市锡山区东亭中学七年级(下)期中数学试卷
    一、选择题。(共10小题,每小题3分,满分30分)
    1.(3分)无锡的浪漫樱花季如约而至,鼋头渚的染井吉野在枝头盈盈而立,游人登阁凭栏,樱谷美景,靡不历历在目.图①是赏樱楼图标,下列哪个图形由图①平移得到(  )


    A. B. C. D.​​
    2.(3分)以下列各组线段为边,能组成三角形的是(  )
    A.2cm、2cm、4cm B.1cm、2cm、3cm
    C.5cm、4cm、3cm D.10cm、5cm、4cm
    3.(3分)下列运算正确的是(  )
    A.a2+a=a3 B.(a2)3=a5 C.a8÷a2=a4 D.a2•a3=a5
    4.(3分)下列多边形中,内角和与外角和相等的是(  )
    A.四边形 B.五边形 C.六边形 D.八边形
    5.(3分)已知2x=6,则2x+3的值是(  )
    A.8 B.15 C.48 D.125
    6.(3分)若(x+2)(x﹣n)=x2+mx+2,则m﹣n的值是(  )
    A.6 B.4 C.2 D.﹣6
    7.(3分)已知x﹣y=3,xy=1,则x2+y2的值为(  )
    A.5 B.7 C.11 D.13
    8.(3分)如图,a∥b,∠3=70°,∠1﹣∠2=10°,则∠1的度数是(  )​

    A.30° B.40° C.50° D.60°
    9.(3分)如图,四边形纸片ABCD中,∠A=65°,∠B=85°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=(  )

    A.60° B.70° C.80° D.85°
    10.(3分)如图,在△ABC中,BD=CD,AE=2BE,连接AD、CE相交于点O,若△ABC的面积为24,则△AOE与△COD的面积之差为(  )

    A.3 B.4 C.6 D.8
    二、填空题。(每空3分,共24分.)
    11.(3分)“碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为    .
    12.(3分)正十边形一个内角度数为   .
    13.(3分)若b为常数,要使4x2﹣2bx+1成为完全平方式,那么b的值是    .
    14.(3分)计算:()2023×(0.6)2022=   .
    15.(3分)分解因式:2x2﹣8x=   .
    16.(3分)等腰三角形的一条边长为6,另一边长为13,则它的周长为    .
    17.(3分)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=80°,则∠A+∠B+∠D+∠E=   .

    18.(3分)观察下列各等式:
    x﹣2=x﹣2;
    (x﹣2)(x+2)=x2﹣22;
    (x﹣2)(x2+2x+4)=x3﹣23;
    (x﹣2)(x3+2x2+4x+8)=x4﹣24;

    请你猜想:若A・(x﹣y)=x5﹣y5,则A=   .
    三、解答题。(共8小题,满分76分)
    19.(16分)计算
    (1).
    (2)(﹣2a2)3+2a2•a4﹣a8÷a2.
    (3)x(x+7)﹣(x﹣3)(x+2).
    (4)(a﹣b+2)(a+b﹣2).
    20.(16分)把下列各式分解因式.
    (1)x3y﹣xy3.
    (2)x(y﹣z)﹣y(z﹣y).
    (3)(x2+4)2﹣16x2.
    (4)(x﹣y)2+4xy.
    21.(6分)先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣5y2,其中x=,y=﹣3.
    22.(6分)如图,在每个小正方形边长为1的方格纸内将△ABC经过一次平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用格点和直尺画图:
    (1)补全△A'B'C';
    (2)请在AC边上找一点D,使得线段BD平分△ABC的面积,在图上作出线段BD;
    (3)利用格点在图中画出AC边上的高线BE.

    23.(6分)完成下面的证明.
    已知:如图,∠A=∠F,∠1=∠2.
    求证:∠C=∠D.
    证明:∵∠A=∠F(已知),
    ∴AC∥   (    ).
    ∴∠C=∠   (    ).
    ∵∠1=∠2(已知),∠2=∠3(    ).
    ∴∠1=∠3(等量代换).
    ∴BD∥CE(同位角相等,两直线平行),
    ∴∠D=∠CEF(    ).
    ∴∠C=∠D(等量代换).

    24.(8分)已知:如图,在△ABC中,AD是角平分线,E为边AB上一点,连接DE,∠EAD=∠EDA,过点E作EF⊥BC,垂足为F.
    (1)求证:DE∥AC;
    (2)若∠DEF=40°,∠B=35°,求∠BAC的度数.

    25.(8分)在苏教版七下第九章的学习中,对同一个图形的面积可以从不同的角度思考,用不同的式子表示.
    (1)用不同的方法计算图1的面积得到等式:   ;
    (2)图2是由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成,从整体看它又是一个直角梯形,用不同的方法计算这个图形的面积,能得到等式:   ;(结果为最简)
    (3)根据上面两个结论,解决下面问题:
    ①在直角△ABC中,∠C=90°,三边长分别为a、b、c,已知ab=12,c=5,求a+b的值.
    ②如图3,四边形ABCD中,对角线AC,BD互相垂直,垂足为O,AC=BD=2,在直角△BOC中,OB=x,OC=y,若△BOC的周长为2,则△AOD的面积=   .


    26.(10分)在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:
    (1)【问题再现】
    如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P=   ;
    (2)【问题推广】
    如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP于点H,若∠ACB=80°,求∠PBH的度数.
    (3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=80°,则∠BPC=   ;
    (4)【拓展提升】
    在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF的角平分线交于点Q,若∠EBF=α,∠DCF=β,直接写出∠Q和α,β之间的数量关系.



    2022-2023学年江苏省无锡市锡山区东亭中学七年级(下)期中数学试卷
    参考答案与试题解析
    一、选择题。(共10小题,每小题3分,满分30分)
    1.(3分)无锡的浪漫樱花季如约而至,鼋头渚的染井吉野在枝头盈盈而立,游人登阁凭栏,樱谷美景,靡不历历在目.图①是赏樱楼图标,下列哪个图形由图①平移得到(  )


    A. B. C. D.​​
    【分析】利用平移的性质进行判断.
    【解答】解:根据平移变换的性质:平移变换只改变图形的位置,不改变图形的形状与大小,
    A、B、C选项中,赏樱楼图标的站立姿势都发生了改变,故D选项符合题意.
    故选:D.
    【点评】本题考查了生活中的平移现象,根据平移变换的性质,结合各选项中图形的站立姿势是解题的关键.
    2.(3分)以下列各组线段为边,能组成三角形的是(  )
    A.2cm、2cm、4cm B.1cm、2cm、3cm
    C.5cm、4cm、3cm D.10cm、5cm、4cm
    【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【解答】解:根据三角形的三边关系,得,
    A.2+2=4,不能组成三角形,不符合题意;
    B.1+2=3,不能够组成三角形,不符合题意;
    C.3+4=7>5,能够组成三角形,符合题意;
    D.4+5=9<10,不能组成三角形,不符合题意.
    故选:C.
    【点评】此题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
    3.(3分)下列运算正确的是(  )
    A.a2+a=a3 B.(a2)3=a5 C.a8÷a2=a4 D.a2•a3=a5
    【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法、除法运算法则计算得出答案.
    【解答】解:A.a2+a,不是同类项,无法合并,故此选项不合题意;
    B.(a2)3=a6,故此选项不合题意;
    C.a8÷a2=a6,故此选项不合题意;
    D.a2•a3=a5,故此选项符合题意.
    故选:D.
    【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法、除法运算法则等知识,正确掌握相关运算法则是解题关键.
    4.(3分)下列多边形中,内角和与外角和相等的是(  )
    A.四边形 B.五边形 C.六边形 D.八边形
    【分析】设多边形的边数是n,根据多边形的内角和与外角和定理即可求解.
    【解答】解:设多边形的边数是n,则(n﹣2)•180=360,
    解得n=4.
    故选:A.
    【点评】本题考查了多边形的内角的计算公式和与外角和定理,理解公式是关键.
    5.(3分)已知2x=6,则2x+3的值是(  )
    A.8 B.15 C.48 D.125
    【分析】利用同底数幂的乘法的法则进行运算即可.
    【解答】解:当2x=6时,
    2x+3
    =2x×23
    =6×8
    =48.
    故选:C.
    【点评】本题主要考查同底数幂的乘法,解答的关键是对相应的运算法则的掌握.
    6.(3分)若(x+2)(x﹣n)=x2+mx+2,则m﹣n的值是(  )
    A.6 B.4 C.2 D.﹣6
    【分析】将所给等式的左边展开,然后与等式右边比较,可得含有m和n的等式,求出m、n的值即可得答案.
    【解答】解:∵(x+2)(x﹣n)=x2+mx+2,
    ∴x2+(2﹣n)x﹣2n=x2+mx+2,
    ∴2﹣n=m,﹣2n=2
    ∴m=3,n=﹣1,
    ∴m﹣n=3+1=4.
    故选:B.
    【点评】本题考查了多项式乘以多项式,明确多项式乘以多项式的运算法则是解题的关键.
    7.(3分)已知x﹣y=3,xy=1,则x2+y2的值为(  )
    A.5 B.7 C.11 D.13
    【分析】运用完全平方公式进行变式、求解.
    【解答】解:∵(x﹣y)2=x2﹣2xy+y2,
    ∴x2+y2
    =(x﹣y)2+2xy
    =32+2×1
    =9+2
    =11,
    故选:C.
    【点评】此题考查了完全平方公式的变式应用能力,关键是能准确理解并运用以上知识进行正确地变式、应用.
    8.(3分)如图,a∥b,∠3=70°,∠1﹣∠2=10°,则∠1的度数是(  )​

    A.30° B.40° C.50° D.60°
    【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=70°,最后进行计算即可解答.
    【解答】解:如图:

    ∵a∥b,
    ∴∠1=∠4,
    ∵∠3是△ABC的一个外角,
    ∴∠3=∠4+∠2=∠1+∠2,
    ∵∠3=70°,∠1﹣∠2=10°,
    ∴∠1=40°,
    故选:B.

    【点评】本题考查了平行线的性质,三角形外角的性质,熟练掌握平行线的性质是解题的关键.
    9.(3分)如图,四边形纸片ABCD中,∠A=65°,∠B=85°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=(  )

    A.60° B.70° C.80° D.85°
    【分析】根据折叠的性质可求得:∠DMN=∠D'MN,∠CNM=∠C'NM,利用多边形的内角和定理可求解∠DMN+∠CNM=150°,由补角的定义可求解.
    【解答】解:由折叠可知:∠DMN=∠D'MN,∠CNM=∠C'NM,
    ∵∠A+∠B+∠C+∠D=360°,∠A=65°,∠B=85°,
    ∴∠C+∠D=210°,
    ∵∠DMN+∠CNM+∠C+∠D=360°,
    ∴∠DMN+∠CNM=150°,
    ∵∠AMD′+∠BNC′+2∠DMN+2∠CNM=2×180°=360°,
    ∴∠AMD′+∠BNC′=60°,
    故选:A.
    【点评】本题主要考查多边形的内角和外角,折叠的性质,掌握多边形的内角和定理是解题的关键.
    10.(3分)如图,在△ABC中,BD=CD,AE=2BE,连接AD、CE相交于点O,若△ABC的面积为24,则△AOE与△COD的面积之差为(  )

    A.3 B.4 C.6 D.8
    【分析】根据等高三角形的面积之比等于底之比可,;再利用S△ACD=S△AOC+S△COD=12,S△AEC=S△AOC+S△AOE=16两式相减即可得出结果.
    【解答】解:BD=CD,AE=2BE,△ABC的面积为24,
    ∴,
    又∵AE=2BE,△ABC的面积为24,
    ∴,
    ∵S△ACD=S△AOC+S△COD=12①,
    S△AEC=S△AOC+S△AOE=16②,
    ∴由②﹣①得S△AOE﹣S△COD=16﹣12=4;
    故选:B.
    【点评】本题考查了三角形的面积,熟练掌握三角形的中线的性质以及等高的三角形的面积比等于其对应底的比是解题的关键.
    二、填空题。(每空3分,共24分.)
    11.(3分)“碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m,该数值用科学记数法表示为  1.05×10﹣5 .
    【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【解答】解:0.0000105=1.05×10﹣5.
    故答案为:1.05×10﹣5.
    【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    12.(3分)正十边形一个内角度数为 144° .
    【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;
    【解答】解:∵一个十边形的每个外角都相等,
    ∴十边形的一个外角为360÷10=36°.
    ∴每个内角的度数为 180°﹣36°=144°;
    故答案为:144°.
    【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.边形的内角与它的外角互为邻补角.
    13.(3分)若b为常数,要使4x2﹣2bx+1成为完全平方式,那么b的值是  ±2 .
    【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定b的值.
    【解答】解:4x2﹣2bx+1=(2x)2﹣2bx+12,
    ∴﹣2bx=±2×2x×1,
    解得:b=±2.
    故答案是:±2.
    【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,注意不要漏解.
    14.(3分)计算:()2023×(0.6)2022=  .
    【分析】利用幂的乘方与积的乘方的逆运算解答即可.
    【解答】解:原式=()2022×()2022×
    =×

    =1×
    =.
    故答案为:.
    【点评】本题主要考查了幂的乘方与积的乘方,将算式适当变形后利用幂的乘方与积的乘方的逆运算解答是解题的关键.
    15.(3分)分解因式:2x2﹣8x= 2x(x﹣4) .
    【分析】直接提取公因式2x,进而得出答案.
    【解答】解:原式=2x(x﹣4).
    故答案为:2x(x﹣4).
    【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
    16.(3分)等腰三角形的一条边长为6,另一边长为13,则它的周长为  32 .
    【分析】本题应分为两种情况6为底或13为底,还要注意是否符合三角形三边关系.
    【解答】解:∵等腰三角形的一边长为6,另一边长为13,
    ∴有两种情况:①13为底,6为腰,而6+6=12<13,舍去;
    ②6为底,13为腰,那么13+13+6=32;
    ∴该三角形的周长是13+13+6=32.
    故答案为:32.
    【点评】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
    17.(3分)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=80°,则∠A+∠B+∠D+∠E= 260° .

    【分析】根据周角的定义求出∠1的度数,用五边形的内角和减去∠1的度数即可得出答案.
    【解答】解:如图,五边形的内角和=(5﹣2)×180°=540°,
    ∵∠BCD=80°,
    ∴∠1=360°﹣80°=280°,
    ∴∠A+∠B+∠D+∠E=540°﹣280°=260°.
    故答案为:260°.

    【点评】本题考查了多边形的内角与外角,掌握多边形的内角和=(n﹣2)•180°是解题的关键.
    18.(3分)观察下列各等式:
    x﹣2=x﹣2;
    (x﹣2)(x+2)=x2﹣22;
    (x﹣2)(x2+2x+4)=x3﹣23;
    (x﹣2)(x3+2x2+4x+8)=x4﹣24;

    请你猜想:若A・(x﹣y)=x5﹣y5,则A= x4+x3y+x2y2+xy3+y4 .
    【分析】观察一系列等式得到规律,从特殊到一般猜想答案.
    【解答】解:下一个等式应该为:
    (x﹣2)(x4+2x3+4x2+8x+16)=x5﹣25,
    猜想:(x﹣y)(x4+x3y+x2y2+xy3+y4)=x5﹣y5,
    ∴A=x4+x3y+x2y2+xy3+y4.
    故答案为:x4+x3y+x2y2+xy3+y4.
    【点评】本题主要考查了探索规律,体现了从特殊到一般的数学思想,弄清楚题中的规律是解题的关键.
    三、解答题。(共8小题,满分76分)
    19.(16分)计算
    (1).
    (2)(﹣2a2)3+2a2•a4﹣a8÷a2.
    (3)x(x+7)﹣(x﹣3)(x+2).
    (4)(a﹣b+2)(a+b﹣2).
    【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质分别化简,进而计算得出答案;
    (2)直接利用积的乘方运算法则、同底数幂的乘除运算法则化简,进而合并同类项得出答案;
    (3)直接利用单项式乘多项式以及多项式乘多项式运算法则化简,进而合并同类项得出答案;
    (4)直接利用平方差公式将原式变形,进而利用完全平方公式化简,进而合并同类项得出答案.
    【解答】解:(1)
    =1+﹣
    =1;

    (2)(﹣2a2)3+2a2•a4﹣a8÷a2
    =﹣8a6+2a6﹣a6
    =﹣7a6;

    (3)x(x+7)﹣(x﹣3)(x+2)
    =x2+7x﹣(x2﹣x﹣6)
    =x2+7x﹣x2+x+6
    =8x+6;

    (4)(a﹣b+2)(a+b﹣2)
    =[a﹣(b﹣2)][a+(b﹣2)]
    =a2﹣(b﹣2)2
    =a2﹣b2+4b﹣4.
    【点评】此题主要考查了整式的混合运算、实数的运算,正确掌握相关运算法则是解题关键.
    20.(16分)把下列各式分解因式.
    (1)x3y﹣xy3.
    (2)x(y﹣z)﹣y(z﹣y).
    (3)(x2+4)2﹣16x2.
    (4)(x﹣y)2+4xy.
    【分析】(1)提公因式后,再利用平方差公式分解即可;
    (2)提取公因式即可;
    (3)先利用平方差公式分解,再利用完全平方公式分解即可;
    (4)先计算乘方,再合并同类项,最后利用完全平方公式分解即可.
    【解答】解:(1)原式=xy(x2﹣y2)=xy(x+y)(x﹣y);
    (2)原式=x(y﹣z)+y(y﹣z)=(y﹣z)(x+y);
    (3)原式=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;
    (4)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.
    【点评】此题考查的是提公因式与公式法进行分解因式,掌握平方差公式和完全平方公式是解决此题的关键.
    21.(6分)先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣5y2,其中x=,y=﹣3.
    【分析】根据整式的四则运算顺序(先乘除,后加减)及整式的运算法则对代数式进行化简,然后将x、y的值代入.
    【解答】解:原式=x2﹣4xy+4y2﹣x2+y2﹣5y2
    =﹣4xy.
    当x=,y=﹣3时,
    原式=.
    【点评】本题考查整式的混合运算,关键是掌握整式的运算顺序以及整式的运算法则.
    22.(6分)如图,在每个小正方形边长为1的方格纸内将△ABC经过一次平移后得到△A'B'C',图中标出了点B的对应点B'.根据下列条件,利用格点和直尺画图:
    (1)补全△A'B'C';
    (2)请在AC边上找一点D,使得线段BD平分△ABC的面积,在图上作出线段BD;
    (3)利用格点在图中画出AC边上的高线BE.

    【分析】(1)根据平移的性质即可补全△A′B′C′;
    (2)根据网格即可在AC边上找一点D,使得线段BD平分△ABC的面积,进而可以在图上作出线段BD;
    (3)利用格点在图中画出AC边上的高线BE即可.
    【解答】解:(1)如图所示,△A′B′C′为所求作三角形;
    (2)如图所示,BD为AC边上的中线;
    (3)如图所示,BE为AC边上的高线.

    【点评】本题考查了作图﹣平移变换,掌握平移的性质是解决本题的关键.
    23.(6分)完成下面的证明.
    已知:如图,∠A=∠F,∠1=∠2.
    求证:∠C=∠D.
    证明:∵∠A=∠F(已知),
    ∴AC∥ DF (  同位角相等,两直线平行 ).
    ∴∠C=∠ ∠CEF (  两直线平行,内错角相等 ).
    ∵∠1=∠2(已知),∠2=∠3(  对顶角相等 ).
    ∴∠1=∠3(等量代换).
    ∴BD∥CE(同位角相等,两直线平行),
    ∴∠D=∠CEF(  两直线平行,同位角相等 ).
    ∴∠C=∠D(等量代换).

    【分析】先利用平行线的判定可得AC∥DF,从而利用平行线的性质可得∠C=∠CEF,再根据已知和对顶角相等可得∠1=∠3,从而可得BD∥CE,然后利用平行线的性质可得∠D=∠CEF,从而利用等量代换,即可解答.
    【解答】解:∵∠A=∠F(已知),
    ∴AC∥DF(同位角相等,两直线平行),
    ∴∠C=∠CEF(两直线平行,内错角相等),
    ∵∠1=∠2(已知),∠2=∠3(对顶角相等),
    ∴∠1=∠3(等量代换),
    ∴BD∥CE(同位角相等,两直线平行),
    ∴∠D=∠CEF(两直线平行,同位角相等).
    ∴∠C=∠D(等量代换),
    故答案为:DF;同位角相等,两直线平行;CEF;两直线平行,内错角相等;对顶角相等;两直线平行,同位角相等.
    【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    24.(8分)已知:如图,在△ABC中,AD是角平分线,E为边AB上一点,连接DE,∠EAD=∠EDA,过点E作EF⊥BC,垂足为F.
    (1)求证:DE∥AC;
    (2)若∠DEF=40°,∠B=35°,求∠BAC的度数.

    【分析】(1)只需要证明∠EDA=∠CAD,即可证明DE∥AC;
    (2)利用三角形内角和定理求出∠EDF=50°,进而求出∠BED=95°,再利用平行线的性质求解即可.
    【解答】(1)证明:∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∵∠EAD=∠EDA,
    ∴∠EDA=∠CAD,
    ∴DE∥AC;
    (2)解:∵EF⊥BD,
    ∴∠EFD=90°,
    ∴∠EDF=180°﹣∠DEF﹣∠EFD=50°,
    ∴∠BED=180°﹣∠B﹣∠BDE=95°,
    ∵DE∥AC,
    ∴∠BAC=∠BED=95°.
    【点评】本题主要考查了平行线的性质与判定,三角形内角和定理,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
    25.(8分)在苏教版七下第九章的学习中,对同一个图形的面积可以从不同的角度思考,用不同的式子表示.
    (1)用不同的方法计算图1的面积得到等式: (a+b)2=a2+b2+2ab ;
    (2)图2是由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成,从整体看它又是一个直角梯形,用不同的方法计算这个图形的面积,能得到等式: a2+b2=c2 ;(结果为最简)
    (3)根据上面两个结论,解决下面问题:
    ①在直角△ABC中,∠C=90°,三边长分别为a、b、c,已知ab=12,c=5,求a+b的值.
    ②如图3,四边形ABCD中,对角线AC,BD互相垂直,垂足为O,AC=BD=2,在直角△BOC中,OB=x,OC=y,若△BOC的周长为2,则△AOD的面积= 1 .


    【分析】(1)根据图1的面积为大正方形的面积,也可以看作是2个不同的正方形的面积加上2个相同的长方形的面积,分别列出代数式即可得到答案;
    (2)图2的面积为直角梯形的面积,也可以看作是3个直角三角形的面积和,分别列出代数式即可得到答案;
    (3)①利用(2)中的结论,代入数据直接计算即可;
    ②根据△BOC的周长先求出BC=2﹣x﹣y,然后利用勾股定理列式整理得到xy=2x+2y﹣2,求出OA=2﹣y,OD=2﹣x,根据三角形的面积公式列式计算即可.
    【解答】解:图1的面积为大正方形的面积,即(a+b)2,
    图1的面积也可以看作是2个不同的正方形的面积加上2个相同的长方形的面积,即a2+b2+2ab,
    故可得等式:(a+b)2=a2+b2+2ab,
    故答案为:(a+b)2=a2+b2+2ab;
    (2)图2的面积为直角梯形的面积,即,
    图2的面积也可以看作是3个直角三角形的面积和,即,
    故可得等式:,
    ∴(a+b)2=2ab+c2,
    ∴a2+b2=c2,
    故答案为:a2+b2=c2;
    (3)①在直角△ABC中,∠C=90°,三边长分别为a、b、c,ab=12,c=5,
    由(2)可得(a+b)2=2ab+c2,即(a+b)2=2×12+52=49,
    ∴a+b=7;
    ②在直角△BOC中,OB=x,OC=y,△BOC的周长为2,
    ∴BC=2﹣x﹣y,
    ∵在直角△BOC中,BC2=OB2+OC2,
    ∴(2﹣x﹣y)2=x2+y2,
    ∴xy=2x+2y﹣2,
    ∵AC=BD=2,
    ∴OA=2﹣y,OD=2﹣x,





    =2﹣x﹣y+x+y﹣1
    =1.
    故答案为:1.
    【点评】本题考查了列代数式,整式的混合运算,勾股定理等知识,掌握常见几何图形的面积公式及整式的运算法则是解题的关键.
    26.(10分)在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:
    (1)【问题再现】
    如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P= 115° ;
    (2)【问题推广】
    如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP于点H,若∠ACB=80°,求∠PBH的度数.
    (3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=80°,则∠BPC= 115° ;
    (4)【拓展提升】
    在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF的角平分线交于点Q,若∠EBF=α,∠DCF=β,直接写出∠Q和α,β之间的数量关系.


    【分析】(1)根据三角形内角和定理和角平分线的定义求解即可;
    (2)先由角平分线的定义得到∠BAC=2∠BAP,∠CBM=2∠CBP,再由三角形外角的性质得到∠CBP=∠BAP+40°,根据三角形内角和定理推出∠P=180°﹣∠BAP﹣∠ABP=40°,再由垂线的定义得到∠BHP=90°,则∠PBH=180°﹣∠P﹣∠BHP=50°;
    (3)先由折叠的性质和平角的定义得到∠AED+∠ADE=130°,进而求出∠A=50°,同(1)即可得到答案;
    (4)分点F在点E左侧,点F在D、E之间,点F在点D右侧三种情况讨论求解即可.
    【解答】解:(1)∵∠A=50°,
    ∴∠ABC+∠ACB=180°﹣∠A=130°,
    ∵BP平分∠ABC,CP平分∠ACB,
    ∴∠ABC=2∠PBC,∠ACB=2∠PCB,
    ∴2∠PBC+2∠PCB=130°,即∠PBC+∠PCB=65°,
    ∴∠P=180°﹣∠PBC﹣∠PCB=115°,
    故答案为:115°;
    (2)∵AP平分∠BAC,BP平分∠CBM,
    ∴∠BAC=2∠BAP,∠CBM=2∠CBP,
    ∵∠CBM=∠BAC+∠ACB,
    ∴∠CBP=∠BAP+40°,
    ∵∠ABC=180°﹣∠ACB﹣∠BAC,
    ∴∠ABC=100°﹣2∠BAP,
    ∴∠P=180°﹣∠BAP﹣∠ABP=40°,
    ∵BH⊥AP,即∠BHP=90°,
    ∴∠PBH=180°﹣∠P﹣∠BHP=50°;
    (3)由折叠的性质可得∠AED=∠PED,∠ADE=∠PDE,
    ∵∠1+∠AEP=180°,∠2+∠ADP=180°,∠1+∠2=100°,
    ∴2∠AED+2∠ADE=260°,
    ∴∠AED+∠ADE=130°,
    ∴∠A=180°﹣∠AED﹣∠ADE=50°,
    ∴同(1)原理可得∠P=115°,
    故答案为:115°;
    (4)当点F在点E左侧时,如图4﹣1所示,

    ∵BE∥CD,
    ∴∠CBE+∠BCD=180°,
    ∵BQ平分∠EBF,CQ平分∠DCF,
    ∴,
    ∵∠EBC+∠FCB=180°﹣∠DCF=180°﹣β,
    ∴;
    当F在D、E之间时,如图4﹣2所示:

    同理可得,∠FBC+∠FCB=180°﹣∠DCF﹣∠EBF=180°﹣α﹣β,
    ∴;
    当点F在D点右侧时,如图4﹣3所示:

    同理可得;
    综上所述,F在E左侧;F在ED中间;F在D右侧.
    【点评】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质,平行线的性质,垂线的定义,熟知相关知识是解题的关键.

    相关试卷

    2022-2023学年江苏省无锡市锡山区东亭片八校数学七年级第二学期期末学业水平测试模拟试题含答案:

    这是一份2022-2023学年江苏省无锡市锡山区东亭片八校数学七年级第二学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若=﹣a,则a的取值范围是,下列因式分解正确的是等内容,欢迎下载使用。

    江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试题(含答案解析):

    这是一份江苏省无锡市锡山区东亭中学2022-2023学年七年级下学期期中数学试题(含答案解析),共21页。

    2022-2023学年江苏省无锡市锡山区天一实验中学七年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年江苏省无锡市锡山区天一实验中学七年级(下)期中数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map