![2023年高考考前押题密卷-数学(广东卷)(考试版)A301](http://www.enxinlong.com/img-preview/3/3/14217509/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年高考考前押题密卷-数学(广东卷)(考试版)A302](http://www.enxinlong.com/img-preview/3/3/14217509/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年高考考前押题密卷-数学(广东卷)(考试版)A3
展开2023年高考考前押题密卷(广东卷)
数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
(原创)1.已知集合,,若,则( )
A. B. C. D.
(原创)2.已知a,,,则( )
A.5 B. C.3 D.
(改编)3.某个函数的大致图象如图所示,则该函数可能是( )
A. B.
C. D.
4.中国古代数学专著《九章算术》的第一章“方田”中载有“半周半径相乘得积步”,其大意为:圆的帐周长乘以其半径等于圆面积.南北朝时期杰出的数学家祖冲之曾用圆内接正多边形的面积“替代”圆的面积,并通过增加圆内接正多边形的边数n使得正多边形的面积更接近圆的面积,从而更为“精确”地估计圆周率π.据此,当n足够大时,可以得到π与n的关系为( )
A. B. C. D.
5.已知向量,满足,且,则向量在向量上的投影向量为( )
A.1 B. C. D.
6.已知,且,则( )
A. B. C. D.
7.某学校为了搞好课后服务工作,教务科组建了一批社团,学生们都能积极选择自己喜欢的社团.目前话剧社团、书法社团、摄影社团、街舞社团分别还可以再接收1名学生,恰好含甲、乙的4名同学前来教务科申请加入,按学校规定每人只能加入一个社团,则甲进街舞社团,乙进书法社团或摄影社团的概率为( )
A. B. C. D.
8.如图,在梯形ABCD中,,,,将△ACD沿AC边折起,使得点D翻折到点P,若三棱锥P-ABC的外接球表面积为,则( )
A.8 B.4 C. D.2
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
(改编)9.已知函数的部分图像如图所示,则( )
A.
B.的图像关于点对称
C.的图像关于直线对称
D.函数为偶函数
(改编)10.下列命题中正确是( )
A.中位数就是第50百分位数
B.已知随机变量X~,若,则
C.已知随机变量~,且函数为偶函数,则
D.已知采用分层抽样得到的高三年级男生、女生各100名学生的身高情况为:男生样本平均数172,方差为120,女生样本平均数165,方差为120,则总体样本方差为
11.已知函数是定义在上的可导函数,当时,,若且对任意,不等式成立,则实数的取值可以是( )
A.-1 B.0 C.1 D.2
12.在平面直角坐标系中,双曲线的左、右焦点分别是,,渐近线方程为,M为双曲线E上任意一点,平分,且,,则( )
A.双曲线的离心率为
B.双曲线的标准方程为
C.点M到两条渐近线的距离之积为
D.若直线与双曲线E的另一个交点为P,Q为的中点,则
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
(改编)13.已知无穷数列满足,写出满足条件的的一个通项公式:___________.(不能写成分段数列的形式)
(原创)14.已知,函数都满足,又,则______.
15.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.
16.已知抛物线与圆,过圆心的直线与抛物线和圆分别交于,,,,其中,在第一象限,,在第四象限,则最小值是______.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
在数列中,,.
(1)求证:数列为等比数列,并求数列的通项公式;
(2)设,求数列的前项和.
18.(12分)
已知的角A,B,C的对边分别为a,b,c,且.
(1)求A;
(2)若的面积为,,点D为边BC的中点,求AD的长.
19.(12分)
如图,在四棱台中,底面是菱形,,梯形底面,.设为的中点.
(1)求证:平面;
(2)上是否存在一点,使得与平面所成角余弦为,请说明理由.
20.(12分)
某医疗用品生产商用新旧两台设备生产防护口罩,产品成箱包装,每箱500个.
(1)若从新旧两台设备生产的产品中分别随机抽取100箱作为样本,其中新设备生产的100箱样本中有10箱存在不合格品,旧设备生产的100箱样本中有25箱存在不合格品,由样本数据,填写完成列联表,并依据小概率值的独立性检验,能否认为“有不合格品”与“设备"有关联?(单位:箱)
是否有不合格品设备 | 无不合格品 | 有不合格品 | 合计 |
新 |
|
|
|
旧 |
|
|
|
合计 |
|
|
|
(2)若每箱口罩在出厂前都要做检验,如检验出不合格品,则更换为合格品.检验时,先从这箱口罩中任取20个做检验,再根据检验结果决定是否对余下的所有口罩做检验.设每个口罩为不合格品的概率都为,且各口罩是否为不合格品相互独立.记20个口罩中恰有3件不合格品的概率为,求最大时的值.
(3)现对一箱产品检验了20个,结果恰有3个不合格品,以(2)中确定的作为的值.已知每个口罩的检验费用为0.2元,若有不合格品进入用户手中,则生产商要为每个不合格品支付5元的赔偿费用.以检验费用与赔偿费用之和的期望为决策依据,是否要对这箱产品余下的480个口罩做检验?
附表:
0.100 | 0.05 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附:,其中.
21.(12分)
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)设直线与轴交于点,过作直线交于两点,交于两点.已知直线交于点,直线交于点.试探究是否为定值,若为定值,求出定值;若不为定值,说明理由.
22.(12分)
已知函数.
(1)当时,求的零点个数;
(2)若恒成立,求实数a的值.
数学-2022年高考考前押题密卷(新高考Ⅰ卷)(A3考试版): 这是一份数学-2022年高考考前押题密卷(新高考Ⅰ卷)(A3考试版),共2页。试卷主要包含了30 , lg11 1,072,841,024等内容,欢迎下载使用。
数学-2023年高考考前押题密卷(江苏卷)(考试版)A3: 这是一份数学-2023年高考考前押题密卷(江苏卷)(考试版)A3,共4页。试卷主要包含了本试卷分第Ⅰ卷两部分,下列结论正确的是等内容,欢迎下载使用。
2023年高考考前押题密卷-数学(新高考Ⅰ卷)(考试版)A3: 这是一份2023年高考考前押题密卷-数学(新高考Ⅰ卷)(考试版)A3,共4页。试卷主要包含了已知圆M的方程为等内容,欢迎下载使用。