终身会员
搜索
    上传资料 赚现金

    2019年湖南省长沙市中考数学试卷

    立即下载
    加入资料篮
    2019年湖南省长沙市中考数学试卷第1页
    2019年湖南省长沙市中考数学试卷第2页
    2019年湖南省长沙市中考数学试卷第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年湖南省长沙市中考数学试卷

    展开

    这是一份2019年湖南省长沙市中考数学试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2019年湖南省长沙市中考数学试卷
    一、选择题(本题共12小题,每题3分,共36分)
    1.(3分)下列各数中,比﹣3小的数是(  )
    A.﹣5 B.﹣1 C.0 D.1
    2.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为(  )
    A.15×109 B.1.5×109 C.1.5×1010 D.0.15×1011
    3.(3分)下列计算正确的是(  )
    A.3a+2b=5ab B.(a3)2=a6
    C.a6÷a3=a2 D.(a+b)2=a2+b2
    4.(3分)下列事件中,是必然事件的是(  )
    A.购买一张彩票,中奖
    B.任意画一个三角形,其内角和是180°
    C.经过有交通信号灯的路口,遇到红灯
    D.射击运动员射击一次,命中靶心
    5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是(  )

    A.80° B.90° C.100° D.110°
    6.(3分)某个几何体的三视图如图所示,该几何体是(  )

    A. B.
    C. D.
    7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的(  )
    A.平均数 B.中位数 C.众数 D.方差
    8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是(  )
    A.2π B.4π C.12π D.24π
    9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是(  )

    A.20° B.30° C.45° D.60°
    10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是(  )

    A.30nmile B.60nmile
    C.120nmile D.(30+30)nmile
    11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(  )
    A. B.
    C. D.
    12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是(  )

    A.2 B.4 C.5 D.10
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.(3分)式子在实数范围内有意义,则实数x的取值范围是   .
    14.(3分)分解因式:am2﹣9a=   .
    15.(3分)不等式组的解集是   .
    16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    “摸出黑球”的次数
    36
    387
    2019
    4009
    19970
    40008
    “摸出黑球”的频率(结果保留小数点后三位)
    0.360
    0.387
    0.404
    0.401
    0.399
    0.400
    根据试验所得数据,估计“摸出黑球”的概率是   .(结果保留小数点后一位)
    17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是   m.

    18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:
    ①△ODM与△OCA的面积相等;
    ②若BM⊥AM于点M,则∠MBA=30°;
    ③若M点的横坐标为1,△OAM为等边三角形,则k=2+;
    ④若MF=MB,则MD=2MA.
    其中正确的结论的序号是   .(只填序号)

    三、解答题(本大题共8个小题,第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)
    19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.
    20.(6分)先化简,再求值:(﹣)÷,其中a=3.
    21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.
    等级
    频数
    频率
    优秀
    21
    42%
    良好
    m
    40%
    合格
    6
    n%
    待合格
    3
    6%

    (1)本次调查随机抽取了   名学生;表中m=   ,n=   ;
    (2)补全条形统计图;
    (3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.
    22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.
    (1)求证:BE=AF;
    (2)若AB=4,DE=1,求AG的长.

    23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
    (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
    (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
    24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边对应成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
    (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
    ①四条边成比例的两个凸四边形相似;(    命题)
    ②三个角分别相等的两个凸四边形相似;(    命题)
    ③两个大小不同的正方形相似.(    命题)
    (2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.
    (3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.

    25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).
    (1)若抛物线的顶点坐标为(1,1),求b,c的值;
    (2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.
    (3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.
    26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.
    (1)求点A的坐标;
    (2)过点C作⊙P的切线CE交x轴于点E.
    ①如图1,求证:CE=DE;
    ②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.


    2019年湖南省长沙市中考数学试卷
    参考答案与试题解析
    一、选择题(本题共12小题,每题3分,共36分)
    1.(3分)下列各数中,比﹣3小的数是(  )
    A.﹣5 B.﹣1 C.0 D.1
    【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
    【解答】解:﹣5<﹣3<﹣1<0<1,
    所以比﹣3小的数是﹣5,
    故选:A.
    【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
    2.(3分)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求.数据15000000000用科学记数法表示为(  )
    A.15×109 B.1.5×109 C.1.5×1010 D.0.15×1011
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
    【解答】解:数据150 0000 0000用科学记数法表示为1.5×1010.
    故选:C.
    【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3.(3分)下列计算正确的是(  )
    A.3a+2b=5ab B.(a3)2=a6
    C.a6÷a3=a2 D.(a+b)2=a2+b2
    【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.
    【解答】解:A、3a与2b不是同类项,故不能合并,故选项A不合题意;
    B、(a3)2=a6,故选项B符合题意;
    C、a6÷a3=a3,故选项C不符合题意;
    D、(a+b)2=a2+2ab+b2,故选项D不合题意.
    故选:B.
    【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.
    4.(3分)下列事件中,是必然事件的是(  )
    A.购买一张彩票,中奖
    B.任意画一个三角形,其内角和是180°
    C.经过有交通信号灯的路口,遇到红灯
    D.射击运动员射击一次,命中靶心
    【分析】根据必然事件、随机事件的意义进行判断即可.
    【解答】解:购买一张彩票,可能中奖,也可能不中奖,因此选项A不正确;
    任意三角形的内角和都是180°,因此选项B正确;
    经过有交通信号灯的路口,可能遇到红灯,也可能遇到绿灯,因此选项C不正确;
    射击运动员射击一次,可能命中靶心,也可能命不中靶心,因此选项D不正确;
    故选:B.
    【点评】本题考查必然事件、随机事件的意义和判定方法,理解必然事件、随机事件的意义是正确判断的前提.
    5.(3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是(  )

    A.80° B.90° C.100° D.110°
    【分析】直接利用邻补角的定义结合平行线的性质得出答案.
    【解答】解:∵∠1=80°,
    ∴∠3=100°,
    ∵AB∥CD,
    ∴∠2=∠3=100°.
    故选:C.

    【点评】此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是解题关键.
    6.(3分)某个几何体的三视图如图所示,该几何体是(  )

    A. B.
    C. D.
    【分析】根据几何体的三视图判断即可.
    【解答】解:由三视图可知:该几何体为圆锥.
    故选:D.
    【点评】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.
    7.(3分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的(  )
    A.平均数 B.中位数 C.众数 D.方差
    【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
    【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,
    故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
    故选:B.
    【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
    8.(3分)一个扇形的半径为6,圆心角为120°,则该扇形的面积是(  )
    A.2π B.4π C.12π D.24π
    【分析】根据扇形的面积公式S=计算即可.
    【解答】解:S==12π,
    故选:C.
    【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.
    9.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是(  )

    A.20° B.30° C.45° D.60°
    【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.
    【解答】解:在△ABC中,∵∠B=30°,∠C=90°,
    ∴∠BAC=180°﹣∠B﹣∠C=60°,
    由作图可知MN为AB的中垂线,
    ∴DA=DB,
    ∴∠DAB=∠B=30°,
    ∴∠CAD=∠BAC﹣∠DAB=30°,
    故选:B.
    【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.
    10.(3分)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是(  )

    A.30nmile B.60nmile
    C.120nmile D.(30+30)nmile
    【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.
    【解答】解:过C作CD⊥AB于D点,
    ∴∠ACD=30°,∠BCD=45°,AC=60.
    在Rt△ACD中,cos∠ACD=,
    ∴CD=AC•cos∠ACD=60×=30.
    在Rt△DCB中,∵∠BCD=∠B=45°,
    ∴CD=BD=30,
    ∴AB=AD+BD=(30+30)nmile.
    答:这时轮船B与小岛A的距离是(30+30)nmile.
    故选:D.

    【点评】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    11.(3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(  )
    A. B.
    C. D.
    【分析】根据题意可以列出相应的方程组,本题得以解决.
    【解答】解:由题意可得,

    故选:A.
    【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    12.(3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是(  )

    A.2 B.4 C.5 D.10
    【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.
    【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.

    ∵BE⊥AC,
    ∴∠AEB=90°,
    ∵tanA==2,设AE=a,BE=2a,
    则有:100=a2+4a2,
    ∴a2=20,
    ∴a=2或﹣2(舍弃),
    ∴BE=2a=4,
    ∵AB=AC,BE⊥AC,CM⊥AB,
    ∴CM=BE=4(等腰三角形两腰上的高相等),
    ∵∠DBH=∠ABE,∠BHD=∠BEA,
    ∴sin∠DBH===,
    ∴DH=BD,
    ∴CD+BD=CD+DH,
    ∴CD+DH≥CM,
    ∴CD+BD≥4,
    ∴CD+BD的最小值为4.
    方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.
    故选:B.
    【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.
    二、填空题(本大题共6小题,每小题3分,共18分)
    13.(3分)式子在实数范围内有意义,则实数x的取值范围是 x≥5 .
    【分析】直接利用二次根式有意义的条件进而得出答案.
    【解答】解:式子在实数范围内有意义,则x﹣5≥0,
    故实数x的取值范围是:x≥5.
    故答案为:x≥5.
    【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.
    14.(3分)分解因式:am2﹣9a= a(m+3)(m﹣3) .
    【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.
    【解答】解:am2﹣9a
    =a(m2﹣9)
    =a(m+3)(m﹣3).
    故答案为:a(m+3)(m﹣3).
    【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    15.(3分)不等式组的解集是 ﹣1≤x<2 .
    【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.
    【解答】解:
    解不等式①得:x≥﹣1,
    解不等式②得:x<2,
    ∴不等式组的解集为:﹣1≤x<2,
    故答案为:﹣1≤x<2.
    【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16.(3分)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    “摸出黑球”的次数
    36
    387
    2019
    4009
    19970
    40008
    “摸出黑球”的频率(结果保留小数点后三位)
    0.360
    0.387
    0.404
    0.401
    0.399
    0.400
    根据试验所得数据,估计“摸出黑球”的概率是 0.4 .(结果保留小数点后一位)
    【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解;
    【解答】解:观察表格发现随着摸球次数的增多摸出黑球频率逐渐稳定在0.4附近,
    故摸到黑球的概率估计值为0.4;
    故答案为:0.4.
    【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
    17.(3分)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是 100 m.

    【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.
    【解答】解:∵点D,E分别是AC,BC的中点,
    ∴DE是△ABC的中位线,
    ∴AB=2DE=2×50=100米.
    故答案为:100.
    【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.
    18.(3分)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:
    ①△ODM与△OCA的面积相等;
    ②若BM⊥AM于点M,则∠MBA=30°;
    ③若M点的横坐标为1,△OAM为等边三角形,则k=2+;
    ④若MF=MB,则MD=2MA.
    其中正确的结论的序号是 ①③④ .(只填序号)

    【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.
    ②△OMA不一定是等边三角形,故结论不一定成立.
    ③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.
    ④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.
    【解答】解:①设点A(m,),M(n,),
    则直线AC的解析式为y=﹣x++,
    ∴C(m+n,0),D(0,),
    ∴S△ODM=n×=,S△OCA=(m+n)×=,
    ∴△ODM与△OCA的面积相等,故①正确;
    ∵反比例函数与正比例函数关于原点对称,
    ∴O是AB的中点,
    ∵BM⊥AM,
    ∴OM=OA,
    ∴k=mn,
    ∴A(m,n),M(n,m),
    ∴AM=(m﹣n),OM=,
    ∴AM不一定等于OM,
    ∴∠BAM不一定是60°,
    ∴∠MBA不一定是30°.故②错误,
    ∵M点的横坐标为1,
    ∴可以假设M(1,k),
    ∵△OAM为等边三角形,
    ∴OA=OM=AM,
    1+k2=m2+,
    ∵m>0,k>0,
    ∴m=k,
    ∵OM=AM,
    ∴(1﹣m)2+=1+k2,
    ∴k2﹣4k+1=0,
    ∴k=2,
    ∵m>1,
    ∴k=2+,故③正确,
    如图,作MK∥OD交OA于K.
    ∵OF∥MK,
    ∴==,
    ∴=,
    ∵OA=OB,
    ∴=,
    ∴=,
    ∵KM∥OD,
    ∴==2,
    ∴DM=2AM,故④正确.
    故答案为①③④.

    【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.
    三、解答题(本大题共8个小题,第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分。解答应写出必要的文字说明、证明过程或验算步骤)
    19.(6分)计算:|﹣|+()﹣1﹣÷﹣2cos60°.
    【分析】根据绝对值的意义、二次根式的除法法则、负整数指数幂的意义和特殊角的三角函数值进行计算.
    【解答】解:原式=+2﹣﹣2×
    =+2﹣﹣1
    =1.
    【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    20.(6分)先化简,再求值:(﹣)÷,其中a=3.
    【分析】先根据分式混合运算的法则把原式进行化简,再将a的值代入进行计算即可.
    【解答】解:原式=•
    =,
    当a=3时,原式==.
    【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    21.(8分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.
    等级
    频数
    频率
    优秀
    21
    42%
    良好
    m
    40%
    合格
    6
    n%
    待合格
    3
    6%

    (1)本次调查随机抽取了 50 名学生;表中m= 20 ,n= 12 ;
    (2)补全条形统计图;
    (3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.
    【分析】(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;
    (2)根据题意补全条形统计图即可得到结果;
    (3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.
    【解答】解:(1)本次调查随机抽取了21÷42%=50名学生,m=50×40%=20,n=×100=12,
    故答案为:50,20,12;
    (2)补全条形统计图如图所示;
    (3)2000×=1640人,
    答:估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.

    【点评】本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    22.(8分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.
    (1)求证:BE=AF;
    (2)若AB=4,DE=1,求AG的长.

    【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;
    (2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果.
    【解答】(1)证明:∵四边形ABCD是正方形,
    ∴∠BAE=∠ADF=90°,AB=AD=CD,
    ∵DE=CF,
    ∴AE=DF,
    在△BAE和△ADF中,,
    ∴△BAE≌△ADF(SAS),
    ∴BE=AF;
    (2)解:由(1)得:△BAE≌△ADF,
    ∴∠EBA=∠FAD,
    ∴∠GAE+∠AEG=90°,
    ∴∠AGE=90°,
    ∵AB=4,DE=1,
    ∴AE=3,
    ∴BE===5,
    在Rt△ABE中,AB×AE=BE×AG,
    ∴AG==.
    【点评】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.
    23.(9分)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
    (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
    (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
    【分析】(1)设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解;
    (2)用2.42×(1+增长率),计算即可求解.
    【解答】解:(1)设增长率为x,根据题意,得
    2(1+x)2=2.42,
    解得x1=﹣2.1(舍去),x2=0.1=10%.
    答:增长率为10%.

    (2)2.42(1+0.1)=2.662(万人).
    答:第四批公益课受益学生将达到2.662万人次.
    【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    24.(9分)根据相似多边形的定义,我们把四个角分别相等,四条边对应成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
    (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
    ①四条边成比例的两个凸四边形相似;(  假 命题)
    ②三个角分别相等的两个凸四边形相似;(  假 命题)
    ③两个大小不同的正方形相似.(  真 命题)
    (2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.
    (3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.

    【分析】(1)根据相似多边形的定义即可判断.
    (2)根据相似多边形的定义证明四边成比例,四个角相等即可.
    (3)四边形ABCD与四边形EFCD相似,证明DE=AE即可解决问题.
    【解答】(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.
    ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.
    ③两个大小不同的正方形相似.是真命题.
    故答案为假,假,真.

    (2)证明:如图1中,连接BD,B1D1.

    ∵∠BCD=∠B1C1D1,且=,
    ∴△BCD∽△B1C1D1,
    ∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,
    ∵==,
    ∴=,
    ∵∠ABC=∠A1B1C1,
    ∴∠ABD=∠A1B1D1,
    ∴△ABD∽△A1B1D1,
    ∴=,∠A=∠A1,∠ADB=∠A1D1B1,
    ∴===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,
    ∴四边形ABCD与四边形A1B1C1D1相似.

    (3)如图2中,

    ∵四边形ABFE与四边形EFCD相似.
    ∴=,
    ∵EF=OE+OF,
    ∴=,
    ∵EF∥AB∥CD,
    ∴=,==,
    ∴+=+,
    ∴==,
    ∵AD=DE+AE,
    ∴=,
    ∴2AE=DE+AE,
    ∴AE=DE,
    ∴四边形ABFE与四边形EFCD相似比为1
    ∴=1.
    【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.
    25.(10分)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).
    (1)若抛物线的顶点坐标为(1,1),求b,c的值;
    (2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.
    (3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.
    【分析】(1)利用抛物线的顶点坐标和二次函数解析式y=﹣2x2+(b﹣2)x+(c﹣2020)可知,y=﹣2(x﹣1)2+1,易得b、c的值;
    (2)设抛物线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入函数解析式,经过化简得到c=2x02+2020,易得c>2020;
    (3)由题意知,抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1,则y≤1.利用不等式的性质推知:≤y,易得1≤m<n.由二次函数图象的性质得到:当x=m时,y最大值=﹣2m2+4m﹣1.当x=n时,y最小值=﹣2n2+4n﹣1.所以,通过解方程求得m、n的值.
    【解答】解:(1)∵抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数)的顶点坐标为(1,1),抛物线解析式是:y=﹣2(x﹣1)2+1=﹣2x2+4x﹣1.
    ∴.
    ∴b=6,c=2019.

    (2)设抛物线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),
    代入解析式可得:.
    ∴两式相加可得:﹣4x02+2(c﹣2020)=0.
    ∴c=2x02+2020,
    ∴c>2020;

    (3)由(1)可知抛物线为y=﹣2x2+4x﹣1=﹣2(x﹣1)2+1.
    ∴y≤1.
    ∵0<m<n,当m≤x≤n时,恰好,
    ∴≤y.
    ∴≤1,即m≥1.
    ∴1≤m<n.
    ∵抛物线的对称轴是直线x=1,且开口向下,
    ∴当m≤x≤n时,y随x的增大而减小.
    ∴当x=m时,y最大值=﹣2m2+4m﹣1.
    当x=n时,y最小值=﹣2n2+4n﹣1.
    又≤y,
    ∴.
    将①整理,得2n3﹣4n2+n+1=0,
    变形,得2n2(n﹣1)﹣(2n+1)(n﹣1)=0.
    ∴(n﹣1)(2n2﹣2n﹣1)=0.
    ∵n>1,
    ∴2n2﹣2n﹣1=0.
    解得n1=(舍去),n2=.
    同理,由②得到:(m﹣1)(2m2﹣2m﹣1)=0.
    ∵1≤m<n,
    ∴2m2﹣2m﹣1=0.
    解得m1=1,m2=(舍去),m3=(舍去).
    综上所述,m=1,n=.
    【点评】主要考查了二次函数综合题,解答该题时,需要熟悉二次函数图象上点的坐标特征,二次函数图象的对称性,二次函数图象的增减性,二次函数最值的意义以及一元二次方程的解法.该题计算量比较大,需要细心解答.难度较大.
    26.(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.
    (1)求点A的坐标;
    (2)过点C作⊙P的切线CE交x轴于点E.
    ①如图1,求证:CE=DE;
    ②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.

    【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;
    (2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠CDE,则CE=DE;
    ②设OE=m,由∠CAE=∠OBE可得,则,代入可求出的值.
    【解答】解:(1)令ax2+6ax=0,
    ax(x+6)=0,
    ∴A(﹣6,0);
    (2)①证明:如图,连接PC,连接PB,延长交x轴于点M,

    ∵⊙P过O、A、B三点,B为顶点,
    ∴PM⊥OA,∠PBC+∠BDM=90°,
    又∵PC=PB,
    ∴∠PCB=∠PBC,
    ∵CE为切线,
    ∴∠PCB+∠ECD=90°,
    又∵∠BDM=∠CDE,
    ∴∠ECD=∠CDE,
    ∴CE=DE.
    ②解:设OE=m,点D的坐标为(t,0),
    ∵∠CAE=∠CBO,∠CAE=∠OBE,
    ∴∠CBO=∠EBO,
    由角平分线成比例定理可得:,
    即:,
    ∴,
    ∴,
    ∴,
    =,
    =.
    【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/5/4 10:33:21;用户:15111498182;邮箱:15111498182;学号:21601448

    相关试卷

    2022年湖南省长沙市中考数学试卷:

    这是一份2022年湖南省长沙市中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省长沙市中考数学试卷:

    这是一份2023年湖南省长沙市中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020年湖南省长沙市中考数学试卷:

    这是一份2020年湖南省长沙市中考数学试卷,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map