所属成套资源:七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用)
- 特训02 相交线 平行线 压轴题-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 4 次下载
- 特训03 实数(题型归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 4 次下载
- 特训05 三角形的有关概念 压轴题(上海精选归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 4 次下载
- 特训06 期中选填压轴题(12.1-14.2)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 4 次下载
- 特训07 期中选填题(上海精选归纳65题)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用) 试卷 3 次下载
特训04 相交线 平行线(题型归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用)
展开
这是一份特训04 相交线 平行线(题型归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用),文件包含特训04相交线平行线题型归纳解析版docx、特训04相交线平行线题型归纳原卷版docx等2份试卷配套教学资源,其中试卷共99页, 欢迎下载使用。
特训04 相交线 平行线(题型归纳)
目录:一、M型、笔尖型、鸡翅型、骨折型;二、动态问题;三、三角板问题;四、情景探究类;五、传统解答证明题。
一、 解答题
一、M型、笔尖型、鸡翅型、骨折型
1.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F= ;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.
【答案】(1)
(2),理由见解析
(3)
【分析】(1)如图1,分别过点,作,,根据平行线的性质得到,,,代入数据即可得到结论;
(2)如图1,根据平行线的性质得到,,由,,得到,根据平行线的性质得到,于是得到结论;
(3)如图2,过点作,设,则,根据角平分线的定义得到,,根据平行线的性质得到,,于是得到结论.
【解析】(1)解:如图1,分别过点,作,,
,
,,
又,,
,
,
又,
,
,,
;
故答案为:;
(2)解:如图1,分别过点,作,,
,
,,
又,,
,
,
又,
,
,,
,
;
(3)解:如图2,过点作,
由(2)知,,
设,则,
平分,平分,
,,
,
,,
,
.
【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.
2.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
【答案】(1)见解析;(2)55°;(3)
【分析】(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【解析】解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
3.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
【答案】(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【解析】解:(1)过E作EH∥AB,如图1,
∴∠BME=∠MEH,
∵AB∥CD,
∴HE∥CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN﹣∠END.
如图2,过F作FH∥AB,
∴∠BMF=∠MFK,
∵AB∥CD,
∴FH∥CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQ∥NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.
4.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
【答案】(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【解析】解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
5.AB∥CD,点P为直线AB,CD所确定的平面内的一点.
(1)如图1,写出∠APC、∠A、∠C之间的数量关系,并证明;
(2)如图2,写出∠APC、∠A、∠C之间的数量关系,并证明;
(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=30°,∠PAB=140°,求∠PEH的度数.
【答案】(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.
【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;
(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=∠FEG,∠GEH=∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.
【解析】(1)∠A+∠C+∠APC=360°,证明如下:
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
又∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,
即∠A+∠C+∠APC=360°;
(2)∠APC=∠A−∠C,证明如下:
如图2所示,过点P作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ−∠CPQ,
∴∠APC=∠A−∠C;
(3)由(2)知,∠APC=∠PAB−∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥PC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG−∠GEH
=∠FEG−∠BEG
=∠BEF
=55°.
【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.
6.已知,点为平面内一点,于.
(1)如图1,点在两条平行线外,则与之间的数量关系为______;
(2)点在两条平行线之间,过点作于点.
①如图2,说明成立的理由;
②如图3,平分交于点平分交于点.若,求的度数.
【答案】(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【解析】解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
7.(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.
(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.
(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.
【答案】(1)∠B+∠BPD+∠D=360°,理由见解析;(2)∠BPD=∠B+∠D,理由见解析;(3)∠BPD=∠D-∠B或∠BPD=∠B-∠D,理由见解析
【分析】(1)过点P作EF∥AB,根据两直线平行,同旁内角互补即可求解;
(2)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.
(3)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.
【解析】解:(1)如图(1)过点P作EF∥AB,
∴∠B+∠BPE=180°,
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠EPD+∠D=180°,
∴∠B+∠BPE+∠EPD+∠D=360°,
∴∠B+∠BPD+∠D=360°.
(2)∠BPD=∠B+∠D.
理由:如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠1+∠2=∠B+∠D.
(3)如图(3),∠BPD=∠D-∠B.
理由:∵AB∥CD,
∴∠1=∠D,
∵∠1=∠B+∠BPD,
∴∠D=∠B+∠BPD,
即∠BPD=∠D-∠B;
如图(4),∠BPD=∠B-∠D.
理由:∵AB∥CD,
∴∠1=∠B,
∵∠1=∠D+∠BPD,
∴∠B=∠D+∠BPD,
即∠BPD=∠B-∠D.
【点睛】此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握平行线的性质,注意辅助线的作法.
8.(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;
(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.
(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.
【答案】(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.
【分析】(1)过E作EMAB,根据平行线的判定与性质和角平分线的定义解答即可;
(2)过E作EMAB,过F作FNAB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;
(3)过P作PLAB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.
【解析】解:(1)过E作EMAB,
∵ABCD,
∴CDEMAB,
∴∠ABE=∠BEM,∠DCE=∠CEM,
∵CF平分∠DCE,
∴∠DCE=2∠DCF,
∵∠DCF=30°,
∴∠DCE=60°,
∴∠CEM=60°,
又∵∠CEB=20°,
∴∠BEM=∠CEM﹣∠CEB=40°,
∴∠ABE=40°;
(2)过E作EMAB,过F作FNAB,
∵∠EBF=2∠ABF,
∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,
∵CF平分∠DCE,
∴设∠DCF=∠ECF=y,则∠DCE=2y,
∵ABCD,
∴EMABCD,
∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,
∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,
同理∠CFB=y﹣x,
∵2∠CFB+(180°﹣∠CEB)=190°,
∴2(y﹣x)+180°﹣(2y﹣3x)=190°,
∴x=10°,
∴∠ABE=3x=30°;
(3)过P作PLAB,
∵GM平分∠DGP,
∴设∠DGM=∠PGM=y,则∠DGP=2y,
∵PQ平分∠BPG,
∴设∠BPQ=∠GPQ=x,则∠BPG=2x,
∵PQGN,
∴∠PGN=∠GPQ=x,
∵ABCD,
∴PLABCD,
∴∠GPL=∠DGP=2y,
∠BPL=∠ABP=30°,
∵∠BPL=∠GPL﹣∠BPG,
∴30°=2y﹣2x,
∴y﹣x=15°,
∵∠MGN=∠PGM﹣∠PGN=y﹣x,
∴∠MGN=15°.
【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.
9.已知直线AB∥CD,P为平面内一点,连接PA、PD.
(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;
(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为 .
(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.
【答案】(1)∠APD=80°;(2)∠PAB+∠CDP-∠APD=180°;(3)∠AND=45°.
【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据平行线的性质,即可证得∠PAB+∠CDP-∠APD=180°;
(3)先证明∠NOD=∠PAB,∠ODN=∠PDC,利用(2)的结论即可求解.
【解析】解:(1)∵∠A=50°,∠D=150°,
过点P作PQ∥AB,
∴∠A=∠APQ=50°,
∵AB∥CD,
∴PQ∥CD,
∴∠D+∠DPQ=180°,则∠DPQ=180°-150°=30°,
∴∠APD=∠APQ+∠DPQ=50°+30°=80°;
(2)∠PAB+∠CDP-∠APD=180°,
如图,作PQ∥AB,
∴∠PAB=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠CDP+∠DPQ=180°,即∠DPQ=180°-∠CDP,
∵∠APD=∠APQ-∠DPQ,
∴∠APD=∠PAB-(180°-∠CDP)=∠PAB+∠CDP-180°;
∴∠PAB+∠CDP-∠APD=180°;
(3)设PD交AN于O,如图,
∵AP⊥PD,
∴∠APO=90°,
由题知∠PAN+∠PAB=∠APD,即∠PAN+∠PAB=90°,
又∵∠POA+∠PAN=180°-∠APO=90°,
∴∠POA=∠PAB,
∵∠POA=∠NOD,
∴∠NOD=∠PAB,
∵DN平分∠PDC,
∴∠ODN=∠PDC,
∴∠AND=180°-∠NOD-∠ODN=180°-(∠PAB+∠PDC),
由(2)得∠PAB+∠CDP-∠APD=180°,
∴∠PAB+∠PDC=180°+∠APD,
∴∠AND=180°-(∠PAB+∠PDC)
=180°-(180°+∠APD)
=180°-(180°+90°)
=45°,
即∠AND=45°.
【点睛】本题考查了平行线的性质以及角平分线的定义.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
10.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
(1)求证:∠CAB=∠MCA+∠PBA;
(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;
(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.
【答案】(1)证明见解析;(2)证明见解析;(3)120°.
【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;
(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.
【解析】解:(1)证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
(2)如图2,∵CD∥AB,
∴∠CAB+∠ACD=180°,
∵∠ECM+∠ECN=180°,
∵∠ECN=∠CAB
∴∠ECM=∠ACD,
即∠MCA+∠ACE=∠DCE+∠ACE,
∴∠MCA=∠DCE;
(3)∵AF∥CG,
∴∠GCA+∠FAC=180°,
∵∠CAB=60°
即∠GCA+∠CAB+∠FAB=180°,
∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,
由(1)可知,∠CAB=∠MCA+∠ABP,
∵BF平分∠ABP,CG平分∠ACN,
∴∠ACN=2∠GCA,∠ABP=2∠ABF,
又∵∠MCA=180°﹣∠ACN,
∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,
∴∠GCA﹣∠ABF=60°,
∵∠AFB+∠ABF+∠FAB=180°,
∴∠AFB=180°﹣∠FAB﹣∠FBA
=180°﹣(120°﹣∠GCA)﹣∠ABF
=180°﹣120°+∠GCA﹣∠ABF
=120°.
【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.
二、动态问题
11.如图,直线ABCD,直线EF与AB、CD分别交于点G、H,∠EHD=α(0°
相关试卷
这是一份沪教版七年级数学下册满分冲刺卷特训04相交线平行线(题型归纳)(原卷版+解析),共88页。试卷主要包含了M型,动态问题,三角板问题,情景探究问题,传统解答证明题等内容,欢迎下载使用。
这是一份特训14 期末解答压轴题(上海精选归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用),文件包含特训14期末解答压轴题上海精选归纳解析版docx、特训14期末解答压轴题上海精选归纳原卷版docx等2份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。
这是一份特训13 期末选填压轴题(上海精选归纳)-2022-2023学年七年级数学下册期中期末挑战满分冲刺卷(沪教版,上海专用),文件包含特训13期末选填压轴题上海精选归纳解析版docx、特训13期末选填压轴题上海精选归纳原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。