2023年高考第三次模拟考试卷-数学(北京B卷)(考试版)A3
展开2023年高考数学第三次模拟考试卷
高三数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
第一部分(选择题 40分)
一、选择题共10小题,每小题4分,共40分。在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合,,则( )
A. B. C. D.
2.设复数满足,则( )
A. B. C. D.
3.在数列中,,,则的值为( )
A.52 B.51 C.50 D.49
4.在的二项展开式中,的系数是( )
A.8 B. C.10 D.
5.“,”是“”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
6.已知抛物线的焦点为,抛物线上一点到点的距离为,则点到原点的距离为( )
A. B. C. D.
7.已知圆C:,过点的直线l与圆C交于A,B两点,则弦长度的最小值为( )
A.1 B.2 C.3 D.4
8.明朝早起,郑和七下西洋过程中,将中国古代天体测量方面所取得的成就创造性地应用于航海,形成了一套先进的航海技术——“过洋牵星术”,简单地说,就是通过观测不同季节、时辰的日月星辰在填空运行的位置和测量星辰在海面以上的高度来判断水位.其采用的主要工具是牵星板,其由块正方形模板组成,最小的一块边长约(称一指),木板的长度按从小到大均两两相差,最大的边长约(称十二指).观测时,将木板立起,一手拿着木板,手臂伸直,眼睛到木板的距离大约为,使牵星板与海平面垂直,让板的下缘与海平面重合,上边缘对着所观测的星辰依高低不停替换、调整木板,当被测星辰落在木板上边缘时所用的是几指板,观测的星辰离海平面的高度就是几指,然后就可以推算出船在海中的地理纬度.如图所示,若在一次观测中,所用的牵星板为六指板,则约为( )
A. B. C. D.
9.双曲线:的左、右焦点分别为F1、F2,过F1的直线与双曲线C的右支在第一象限的交点为A,与y轴的交点为B,且△ABF2为等边三角形,则双曲线的离心率为( )
A. B. C. D.
10.已知正方体的棱长为2,点为正方形所在平面内一动点,给出下列三个命题:
①若点总满足,则动点的轨迹是一条直线;
②若点到直线与到平面的距离相等,则动点的轨迹是抛物线;
③若点到直线的距离与到点的距离之和为2,则动点的轨迹是椭圆.
其中正确的命题个数是( )
A.0 B.1 C.2 D.3
第二部分(非选择题 共110分)
二、填空题共5小题,每小题5分,共25分.
11.函数的定义域为______________.
12.已知是夹角为的两个单位向量,若向量,则__________.
13.袋子中有7个大小相同的小球,其中4个红球,3个黄球,每次从袋子中随机摸出1个小球,摸出的球不再放回,则在第1次摸到红球的条件下,第2次摸到红球的概率是___________.
14.在中,角的对边分别为,若,,,则__________.
15.对于满足一定条件的连续函数,存在一个点,使得,那么我们称该函数为“不动点”函数,而称为该函数的一个不动点,现新定义:若满足,则称为的次不动点,有下面四个结论
①定义在R上的偶函数既不存在不动点,也不存在次不动点
②定义在R上的奇函数既存在不动点,也存在次不动点
③当时,函数在上仅有一个不动点和一个次不动点.
④不存在正整数m,使得函数在区间上存在不动点,其中,正确结论的序号为__________.
三、解答题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.
16.(13分)在中,内角所对的边分别是,,.已知.
(1)求角的大小;
(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在且唯一确定,求的面积.
条件①:,;
条件②:,;
条件③:,.
注:如果选择多个条件分别解答,按第一个解答计分.
17.(13分)如图,在四棱锥中,平面,,,,.为棱上一点,平面与棱交于点.再从条件①、条件②这两个条件中选择一个作为己知,完成下列两个问题
(1)求证:为的中点;
(2)求二面角的余弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
18.(14分)网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为A组和B组,这20户家庭三月份网购生鲜蔬菜的次数如下图:
假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响·
(1)从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;
(2)从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X,估计X的数学期望;
(3)从A组和B组中分别随机抽取2户家庭,记为A组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,为B组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差与的大小.(结论不要求证明)
19.(15分)已知.
(1)当时,求函数在点处的切线方程;
(2)求证:;
(3)若在恒成立,求的取值范围.
20.(15分)已知椭圆,点为椭圆的上顶点,设直线过点且与椭圆交于两点,点不与的顶点重合,当轴时,.
(1)求椭圆的方程;
(2)设直线与直线的交点分别为,求的取值范围.
21.(15分)对于每项均是正整数的数列、、、,定义变换,将数列变换成数列、、、、.对于每项均是非负整数的数列、、、,定义变换,将数列各项从大到小排列,然后去掉所有为零的项,得到数列;又定义.设是每项均为正整数的有穷数列,令.
(1)如果数列为、、,写出数列、;
(2)对于每项均是正整数的有穷数列,证明;
(3)证明:对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,.
数学(江苏B卷)2023年高考第三次模拟考试卷(考试版)A3: 这是一份数学(江苏B卷)2023年高考第三次模拟考试卷(考试版)A3,共4页。试卷主要包含了已知定义在上的函数满足,已知数列满足,,,则等内容,欢迎下载使用。
2023年高考第三次模拟考试卷-数学(广东B卷)(考试版)A3: 这是一份2023年高考第三次模拟考试卷-数学(广东B卷)(考试版)A3,共5页。试卷主要包含了若,则,已知,,,则,下列命题正确的是等内容,欢迎下载使用。
2023年高考第三次模拟考试卷-数学(新高考Ⅱ卷A卷)(考试版)A3: 这是一份2023年高考第三次模拟考试卷-数学(新高考Ⅱ卷A卷)(考试版)A3,共4页。试卷主要包含了已知向量,,若,且,则实数,已知,则等内容,欢迎下载使用。