2023年高考第三次模拟考试卷-数学(云南,安徽,黑龙江,山西,吉林五省通用A卷)(全解全析)
展开2023年高考数学第三次模拟考试卷
数学·全解全析
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写
在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,集合,则( )
A.3 B. C. D.
【答案】D
【解析】,
,所以.
故选:D.
2.设复数的共轭复数为,则( )
A. B. C. D.
【答案】D
【解析】因为,所以,故,
故.
故选:D
3.圆台的上、下底面半径分别是,,圆台的高为4,则该圆台的侧面积是( )
A. B. C. D.
【答案】C
【解析】依题意,
因为圆台的,,且高,母线长是5,
故圆台的侧面积.
故选:C.
4.已知,则的值为( )
A. B. C. D.
【答案】B
【解析】
.
故选:B.
5.新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A型号新能源汽车的耗电量(单位:kW·h/100km)情况,随机调查得到了1200个样本,据统计该型号新能源汽车的耗电量,若,则样本中耗电量不小于的汽车大约有( )
A.180辆 B.360辆 C.600辆 D.840辆
【答案】A
【解析】因为,且,
所以,
所以样本中耗电量不小于的汽车大约(辆).
故选:A.
6.已知是坐标原点,是双曲线的左焦点,平面内一点满足是等边三角形,线段与双曲线交于点,且,则双曲线的离心率为( )
A. B. C. D.
【答案】A
【解析】设双曲线的右焦点为,连接,
因为是等边三角形,所以,
,又,所以,
在中,,
则,则,则.
故选:A.
7.已知直线与相交于点,线段是圆的一条动弦,且,则的最小值为( )
A. B. C. D.
【答案】A
【解析】由圆的方程知:圆心,半径;
由得:,恒过定点;
由得:,恒过定点;
由直线方程可知:,,即,
设,则,,
,整理可得:,
即点的轨迹是以为圆心,为半径的圆,
又直线斜率存在,点轨迹不包含;
若点为弦的中点,则,位置关系如图:
连接,
由知:,
则,
(当在处取等号),
即的最小值为.
故选:A.
8.已知函数及其导函数的定义域均为,记.若为奇函数,为偶函数,且,,则( )
A.670 B.672 C.674 D.676
【答案】D
【解析】∵为奇函数,
∴,
∴,即:,
又∵,
∴,①
又∵为偶函数,
∴,②
∴将②中换成得:,③
∴将③中换成得:,④
由①④得:,
∴的一个周期为3,
∴,
将代入③得:,
∴
又∵,
∴.
故选:D.
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.若,,则( ).
A. B.
C. D.
【答案】AD
【解析】对于A:由题意可得,因为,所以,故A正确;
对于B:当,时,满足已知条件,但,故B错误;
对于C:当,,时,满足已知条件,但,故C错误;
对于D:,因为,可得,所以,故D正确.
故选:AD.
10.某研究机构为了探究吸烟与肺气肿是否有关,调查了200人.统计过程中发现随机从这200人中抽取一人,此人为肺气肿患者的概率为0.1.在制定列联表时,由于某些因素缺失了部分数据,而获得如图所示的列联表,下列结论正确的是( )
| 患肺气肿 | 不患肺气肿 | 合计 |
吸烟 | 15 |
|
|
不吸烟 |
| 120 |
|
合计 |
|
| 200 |
参考公式与临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A.不吸烟患肺气肿的人数为5人 B.200人中患肺气肿的人数为10人
C.的观测值 D.按99.9%的可靠性要求,可以认为“吸烟与肺气肿有关系”
【答案】AD
【解析】A选项,200人中抽取一人,此人为肺气肿患者的概率为0.1,故肺气肿患者共有人,由于吸烟患肺气肿的人数为15人,故不吸烟患肺气肿的人数为5人,A正确,B错误;
C选项,列联表如下:
| 患肺气肿 | 不患肺气肿 | 合计 |
吸烟 | 15 | 60 | 75 |
不吸烟 | 5 | 120 | 125 |
合计 | 20 | 180 | 200 |
则的观测值,C错误;
D选项,由于,故按99.9%的可靠性要求,可以认为“吸烟与肺气肿有关系”,D正确.
故选:AD
11.已知函数,下列关于该函数的结论正确的是( )
A.的图象关于直线对称 B.的一个周期是
C.在区间上单调递增 D.的最大值为
【答案】ABD
【解析】已知,
对于A,,故A正确;
对于B,,故B正确;
对于C,,则,又函数连续,故C错误;
对于D,因为,当时,所以的最大值为,
当时,,,也取得最大值,
所以的最大值为,故D正确;
故选:ABD
12.定义:对于定义在区间上的函数和正数,若存在正数,使得不等式对任意恒成立,则称函数在区间上满足阶李普希兹条件,则下列说法正确的有( )
A.函数在上满足阶李普希兹条件.
B.若函数在上满足一阶李普希兹条件,则的最小值为2.
C.若函数在上满足的一阶李普希兹条件,且方程在区间上有解,则是方程在区间上的唯一解.
D.若函数在上满足的一阶李普希兹条件,且,则存在满足条件的函数,存在,使得.
【答案】ABC
【解析】A选项:不妨设,,即,故,对,均有,A选项正确;
B选项:不妨设,在单调递增,,,即,即对,恒成立,即在上单调递减,对恒成立,所以对恒成立,即,即的最小值为,B选项正确;
C选项:假设方程在区间上有两个解,,则,这与矛盾,故只有唯一解,C选项正确;
D选项:不妨设,当时,,当时,,故对,,不存在使,D选项错误;
故选:ABC.
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.函数为定义在上的奇函数,当时,,则___________.
【答案】
【解析】由题设,,故时,
所以,故.
故答案为:
14.的展开式中所有不含字母的项的系数之和为___________.
【答案】32
【解析】由二项式定理得: 的展开项的通项公式为 ,
欲使得不含z,则 , ,
令 ,则所以不含字母z的项的系数之和 ;
故答案为:32.
15.已知椭圆C:的左、右焦点分别为、,点、在椭圆C上,满足,,若椭圆C的离心率,则实数λ取值范围为______.
【答案】
【解析】根据题意知,由得,
不妨设点在第一象限,则点的坐标为.
由知,且,
从而得到点的坐标为.
将点的坐标代入椭圆C方程得,
整理得,即,
所以.
又因为,所以,即实数λ取值范围为.
故答案为:.
16.古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,…,我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中的“落一形”锥垛就是每层为“三角形数”的三角锥的锥垛(如图所示,顶上一层1个球,下一层3个球,再下一层6个球…),若一“落一形”三角锥垛有10层,则该锥垛球的总个数为___________.
(参考公式:)
【答案】220
【解析】,,
,,
,
,
当时,该锥垛球的总个数为:.
故答案为:220
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。
17.(10分)
已知数列满足,.
(1)证明:数列是等差数列;
(2)求数列的前n项和.
【解析】(1)因为 ①,
所以当时, ②.
因为,所以由得,即.
所以,即.
由,
得,所以,所以.
所以数列是以-2为首项,-3为公差的等差数列.
(2)由(1)得,
即,
所以.
所以
.
18.(12分)
在①,②,③这三个条件中任选一个作为条件,补充到下面问题中,然后解答.
已知锐角的内角,,所对的边分别为,,,且______(填序号).
(1)若,,求的面积;
(2)求的取值范围.
【解析】(1)选①,根据余弦定理展开,即,
所以,由得;
选②,根据正弦定理可得,
因为,
所以,因为,所以,
由得;
选③,根据正弦定理和三角形的恒等变换得:
,
因为,化简可得,
得,由得;
,
,∴,
由已知,,,
.
(2)
,
∵为锐角三角形,∴,
∴,,所以.
19.(12分)
如图,已知四棱锥的底面为菱形,且,,.是棱PD上的点,且四面体的体积为
(1)证明:;
(2)若过点C,M的平面α与BD平行,且交PA于点Q,求平面与平面夹角的余弦值.
【解析】(1)解法一:
如图1,取AB中点O,连接PO,CO.
因为,,所以,,.
又因为是菱形,,所以,.
因为,所以,所以.
又因为平面,平面ABCD,,
所以平面.
因为,平面PBC,平面PBC,
所以平面PBC,
所以.
因为,
所以点M到平面PBC的距离是点D到平面PBC的距离的,
所以.
解法二:
如图2,取AB中点O,连接PO,CO,
因为,,
所以,,,
又因为是菱形,,
所以,.
因为,所以,所以.
因为平面PAB,平面PAB,,
所以平面PAB.
所以,.
过M作交AP于点N,,所以.
又平面PBC,平面PBC,
所以平面PBC,所以.
因为,,
所以,
所以N是PA的中点,所以M是PD的中点,所以.
(2)解法一:
由(1)知,,,.
如图3,以O为坐标原点,,,的方向分别为x轴,y轴,z轴正方向建立空间直角坐标系,
则,,,,,所以,,,,,.
因为,设,则,
因为,,,,故存在实数a,b,使得,
所以,解得,
所以.
设平面的法向量为,则,即,
取,得到平面的一个法向量.
设平面与平面夹角是,
又因为是平面的一个法向量,
则.
所以平面与平面夹角的余弦值是.
解法二:
由(1)知,,,,
如图3,以O为坐标原点,,,的方向分别为x轴,y轴,z轴正方向建立空间直角坐标系,
则,,,,,所以,,,,,.
设平面的法向量为,则,即.
取,得到平面的一个法向量.
因为,设,则,
因为,所以,所以
设平面的法向量为,则,即.
取,得到平面的一个法向量.
设平面与平面夹角是,
又因为是平面的一个法向量,
则.
所以平面与平面夹角的余弦值是.
解法三:
在平面内,过C作交AD延长线于点E,交AB延长线于点F,
因为是菱形,所以.
如图4,在平面PAD内,作交EM的延长线于点,设交AP于点Q.
所以,四边形是平行四边形,,.
所以,所以,
所以点Q是线段PA上靠近P的三等分点.
如图5,在平面PAB内,作,交AB于T,
因为平面,所以平面,所以,
因为,,
在平面内,作,交BC于点N,连接QN,过A作交BC于K,
在中,,,所以,
所以,
因为,,,且两直线在平面内,所以平面,
因为平面,所以.
所以是二面角的平面角.
在中,,所以.
所以平面与平面夹角的余弦值是.
20.(12分)
为普及航空航天科技相关知识、发展青少年航空航天科学素养,贵州省某中学组织开展“筑梦空天”航空航天知识竞赛.竞赛试题有甲、乙、丙三类(每类题有若干道),各类试题的每题分值及小明答对概率如下表所示,各小题回答正确得到相应分值,否则得分,竞赛分三轮答题依次进行,各轮得分之和即为选手总分.
项目 题型 | 每小题分值 | 每小题答对概率 |
甲类题 | ||
乙类题 | ||
丙类题 |
其竞赛规则为:
第一轮,先回答一道甲类题,若正确,进入第二轮答题;若错误,继续回答另一道甲类题,该题回答正确,同样进入第二轮答题,否则,退出比赛.
第二轮,在乙类题或丙类题中选择一道作答,若正确,进入第三轮答题;否则,退出比赛.
第三轮,在前两轮未作答的那一类试题中选择一道作答.
小明参加竞赛,有两种方案选择,方案一:先答甲类题,再答乙类题,最后答丙类题;
方案二:先答甲类题,再答丙类题,最后答乙类题.各题答对与否互不影响.请完成以下解答:
(1)若小明选择方案一,求答题次数恰好为次的概率;
(2)经计算小明选择方案一所得总分的数学期望为,为使所得总分的数学期望最大,小明该选择哪一种方案?并说明理由.
【解析】(1)记事件“小明先答对甲类一道试题”,“小明继续答对另一道甲类试题”,
“小明答对乙类试题”,“小明答对丙类试题”,
则,,,
记事件“小明答题次数恰好为次”,则.
,
即小明答题次数恰好为次的概率为.
(2)设小明竞赛得分为,由方案二知的可能值为、、、.
,
,
,
.
所以,.
因为,所以选择方案一.
21.(12分)
抛物线C:上的点到抛物线C的焦点F的距离为2,A、B(不与O重合)是抛物线C上两个动点,且.
(1)求抛物线C的标准方程;
(2)x轴上是否存在点P使得?若存在,求出点P的坐标,若不存在,说明理由.
【解析】(1)由抛物线的定义得,解得,
则抛物线的标准方程为.
(2)依题意知直线与直线的斜率存在,设直线方程为,
由得直线方程为:,
由,解得,
由,解得
由得,假定在轴上存在点使得,设点,
则由(1)得直线斜率,直线斜率,
由得,则有,即,
整理得,
显然当时,对任意不为0的实数,恒成立,
即当时,恒成立,恒成立,
所以轴上存在点使得.
22.(12分)
已知函数的图象在处的切线方程为.
(1)求,的值及的单调区间.
(2)已知,是否存在实数,使得曲线恒在直线的上方?若存在,求出实数的值;若不存在,请说明理由.
【解析】(1)因为,所以,
又在处的切线方程为,所以故,
又,所以切线方程为,故,
所以,则
当时,,单调递减;
当时,,单调递增.
综上,的单调递减区间为,单调递增区间为.
(2)且.
由曲线恒在直线的上方,知.
当时,等价于,即
设则.
由(1)可知,当时,单调递增,所以.
设,则,
当时,,所以在上单调递减,
所以.
所以当时,,所以在上单调递增,
所以,所以.
当时,等价于,即
设由①可知.
由(1)可知,当时,单调递减,所以.
再设,则,
当时,所以在上单调递增,所以.
所以当时,,所以在上单调递增,
所以,所以.
综上可知,存在实数,使得曲线恒在直线的上方.
数学(云南,安徽,黑龙江,山西,吉林五省通用):2023年高考模拟考试卷A(全解全析): 这是一份数学(云南,安徽,黑龙江,山西,吉林五省通用):2023年高考模拟考试卷A(全解全析),共23页。
数学(云南,安徽,黑龙江,山西,吉林五省通用):2023年高考模拟考试卷A(全解全析): 这是一份数学(云南,安徽,黑龙江,山西,吉林五省通用):2023年高考模拟考试卷A(全解全析),共23页。
数学-2023年高考押题预测卷01(云南,安徽,黑龙江,山西,吉林五省新高考专用)(全解全析): 这是一份数学-2023年高考押题预测卷01(云南,安徽,黑龙江,山西,吉林五省新高考专用)(全解全析),共24页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。