所属成套资源:【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)
- 打卡第三天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版 试卷 12 次下载
- 打卡第四天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版 试卷 12 次下载
- 打卡第五天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版 试卷 12 次下载
- 打卡第七天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版 试卷 12 次下载
- 打卡第九天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版 试卷 16 次下载
打卡第六天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版
展开
这是一份打卡第六天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第六天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第六天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)
新高考真题限时训练打卡第六天
Ⅱ 真题限时训练
一、单选题
1.(2021·全国·统考高考真题)已知,则( )
A. B. C. D.
【答案】C
【分析】利用复数的乘法和共轭复数的定义可求得结果.
【详解】因为,故,故
故选:C.
2.(2021·全国·统考高考真题)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A. B. C. D.
【答案】B
【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.
【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.
故选:B.
3.(2022·全国·统考高考真题)已知向量,若,则( )
A. B. C.5 D.6
【答案】C
【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
【详解】解:,,即,解得,
故选:C
4.(2021·全国·统考高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )
A. B. C. D.
【答案】D
【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.
【详解】作出图形,连接该正四棱台上下底面的中心,如图,
因为该四棱台上下底面边长分别为2,4,侧棱长为2,
所以该棱台的高,
下底面面积,上底面面积,
所以该棱台的体积.
故选:D.
5.(2021·全国·统考高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13 B.12 C.9 D.6
【答案】C
【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
【详解】由题,,则,
所以(当且仅当时,等号成立).
故选:C.
6.(2021·全国·统考高考真题)已知,,,则下列判断正确的是( )
A. B. C. D.
【答案】C
【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.
【详解】,即.
故选:C.
二、多选题
7.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
【答案】AC
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
8.(2021·全国·统考高考真题)设正整数,其中,记.则( )
A. B.
C. D.
【答案】ACD
【分析】利用的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.
【详解】对于A选项,,,
所以,,A选项正确;
对于B选项,取,,,
而,则,即,B选项错误;
对于C选项,,
所以,,
,
所以,,因此,,C选项正确;
对于D选项,,故,D选项正确.
故选:ACD.
三、填空题
9.(2021·全国·统考高考真题)已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
【答案】
【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.
【详解】抛物线: ()的焦点,
∵P为上一点,与轴垂直,
所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,
因为Q为轴上一点,且,所以Q在F的右侧,
又,因为,所以,
,所以的准线方程为故答案为:.
【点睛】利用向量数量积处理垂直关系是本题关键.
10.(2021·全国·统考高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.
【答案】 5
【分析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.
【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;
故对折4次可得到如下规格:,,,,,共5种不同规格;
(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,
设,
则,
两式作差得:
,
因此,.
故答案为:;.
【点睛】方法点睛:数列求和的常用方法:
(1)对于等差等比数列,利用公式法可直接求解;
(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;
(3)对于结构,利用分组求和法;
(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.
五、解答题
11.(2021·全国·统考高考真题)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
【答案】(1)见解析;(2)类.
【分析】(1)通过题意分析出小明累计得分的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答类问题的数学期望,比较两个期望的大小即可.
【详解】(1)由题可知,的所有可能取值为,,.
;
;
.
所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.
;
;
.
所以.
因为,所以小明应选择先回答类问题.
12.(2021·全国·统考高考真题)如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
【答案】(1)证明见解析;(2).
【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;
(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.
【详解】(1)因为,O是中点,所以,
因为平面,平面平面,
且平面平面,所以平面.
因为平面,所以.
(2)[方法一]:通性通法—坐标法
如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x轴,建立空间直角坐标系,
则,设,
所以,
设为平面的法向量,
则由可求得平面的一个法向量为.
又平面的一个法向量为,
所以,解得.
又点C到平面的距离为,所以,
所以三棱锥的体积为.
[方法二]【最优解】:作出二面角的平面角
如图所示,作,垂足为点G.
作,垂足为点F,连结,则.
因为平面,所以平面,
为二面角的平面角.
因为,所以.
由已知得,故.
又,所以.
因为,
.
[方法三]:三面角公式
考虑三面角,记为,为,,
记二面角为.据题意,得.
对使用三面角的余弦公式,可得,
化简可得.①
使用三面角的正弦公式,可得,化简可得.②
将①②两式平方后相加,可得,
由此得,从而可得.
如图可知,即有,
根据三角形相似知,点G为的三等分点,即可得,
结合的正切值,
可得从而可得三棱锥的体积为.
【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;
方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.
方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.
13.(2021·全国·统考高考真题)已知函数.
(1)讨论的单调性;
(2)设,为两个不相等的正数,且,证明:.
【答案】(1)的递增区间为,递减区间为;(2)证明见解析.
【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.
(2)方法二:将题中的等式进行恒等变换,令,命题转换为证明:,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.
【详解】(1)的定义域为.
由得,,
当时,;当时;当时,.
故在区间内为增函数,在区间内为减函数,
(2)[方法一]:等价转化
由得,即.
由,得.
由(1)不妨设,则,从而,得,
①令,
则,
当时,,在区间内为减函数,,
从而,所以,
由(1)得即.①
令,则,
当时,,在区间内为增函数,,
从而,所以.
又由,可得,
所以.②
由①②得.
[方法二]【最优解】:变形为,所以.
令.则上式变为,
于是命题转换为证明:.
令,则有,不妨设.
由(1)知,先证.
要证:
.
令,
则,
在区间内单调递增,所以,即.
再证.
因为,所以需证.
令,
所以,故在区间内单调递增.
所以.故,即.
综合可知.
[方法三]:比值代换
证明同证法2.以下证明.
不妨设,则,
由得,,
要证,只需证,两边取对数得,
即,
即证.
记,则.
记,则,
所以,在区间内单调递减.,则,
所以在区间内单调递减.
由得,所以,
即.
[方法四]:构造函数法
由已知得,令,
不妨设,所以.
由(Ⅰ)知,,只需证.
证明同证法2.
再证明.令.
令,则.
所以,在区间内单调递增.
因为,所以,即
又因为,所以,
即.
因为,所以,即.
综上,有结论得证.
【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.
方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.
方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.
方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.
Ⅲ 精选模拟题预测
一、单选题
1.(2023·河南·校联考模拟预测)若复数z的共轭复数为,且,则z的虚部为( )
A. B. C. D.2
【答案】D
【分析】先根据条件求出复数,然后可得虚部.
【详解】设复数,a,,则,
即,解得,则,故z的虚部为2.
故选:D.
2.(2023·全国·高一专题练习)在古希腊数学家欧几里得的著作《几何原本》中,把轴截面为等腰直角三角形的圆锥称为直角圆锥.在直角圆锥中,点与底面圆都在同一个球面上,若球的表面积为,则圆锥的侧面积为( )
A. B. C. D.
【答案】A
【分析】由直径所对的圆周角为直角,可得圆锥底面半径为球的半径,利用球的表面积即可求解.
【详解】圆锥的轴截面为等腰直角三角形,如图所示:
在直角圆锥中,点与底面圆都在同一个球面上,由,所以为球的直径,
若球的表面积为,由,球的半径,
则圆锥底面半径,圆锥母线长,
所以圆锥的侧面积为.
故选:A
3.(2023·全国·高三专题练习)在矩形中,,点满足,则( )
A. B.14 C. D.
【答案】A
【分析】根据题意建立合适的平面直角坐标系,找到各个点的坐标,根据,求出点坐标,代入中即可得出结果.
【详解】解:由题不妨以为坐标原点,方向分别为轴建立如图所示直角坐标系,
则所以,,
因为设,所以,解得,
所以,所以.
故选:A
4.(2023·全国·高三专题练习)过圆锥内接正方体(正方体的4个顶点在圆锥的底面,其余顶点在圆锥的侧面)的上底面作一平面,把圆锥截成两部分,下部分为圆台,已知此圆台上底面与下底面的面积比为 ,母线长为,设圆台体积为,正方体的外接球体积为,则( )
A. B. C. D.
【答案】A
【分析】由题意可得圆台上底面与下底面的半径比为,表示出正方体棱长,利用解求得,,根据圆台以及球的体积公式,即可求得答案.
【详解】设圆台的上下底面半径为 ,
由圆台上底面与下底面的面积比为,得圆台上底面与下底面的半径比为,
由题意知正方体的棱长为,
如图,设为圆台的一条母线,为正方体的一条棱,
为圆台上下底面的中心,
在中,,,,
即,解得,,
则,
正方体的外接球半径为,故,
所以,
故选:A
5.(2023秋·云南·高二统考期末)设,则下列正确的是( )
A. B.
C. D.
【答案】B
【分析】先通过符号判断最小,再通过与比较,确定.
【详解】∵,
而,
所以最小.
又,所以,即有,
因此,
故选:B.
6.(2023·云南昆明·高三昆明一中校考阶段练习)已知椭圆C:的左右焦点分别为,,点P是C上的一个动点,若椭圆C上有且仅有4个点P满足是直角三角形,则椭圆C的离心率的取值范围是( )
A. B.
C. D.
【答案】B
【分析】由数形结合可知,点不是直角顶点,则由,确定离心率的取值范围.
【详解】当和垂直于时,恰有4个点满足是直角三角形,
由条件可知,点不是直角顶点,则以为直径的圆与椭圆无交点,
则,得,解得:,
所以椭圆离心率的取值范围是.
故选:B
二、多选题
7.(2022春·江苏淮安·高一校考阶段练习)已知、、,,,则下列说法正确的是( )
A. B.
C. D.
【答案】AD
【分析】由已知可得,利用同角三角函数的平方关系结合两角差的余弦公式可求得的值,求出的取值范围,即可得解.
【详解】由已知可得,
所以,
,
所以,,
因为、、,则,
因为,函数在上单调递增,则,则,故,
故选:AD.
8.(2023秋·广东·高二校联考期末)已知,记的前项和为,若数列,记的前项和为,若对于任意的,不等式恒成立,则实数的值可能是( )
A. B.0 C. D.2
【答案】AD
【分析】结合对数运算及数列求和依次求得,求得,则问题等价于对任意的恒成立,即可根据二次函数的性质列式求解.
【详解】由题意知,,故,
由,得, ,
则不等式恒成立等价于1恒成立,而,∴问题等价于对任意的恒成立.
设,则,即,解得:或.
故选:AD.
三、填空题
9.(2023春·江西吉安·高三吉安三中校考阶段练习)点到抛物线准线的距离为4,则实数____________.
【答案】
【分析】由抛物线的标准方程可得准线方程,根据点到准线的距离为4求解的值即可.
【详解】抛物线即的准线方程为,
因为点到准线的距离为4,
所以,解得,
故答案为:
10.(2023·山东潍坊·统考一模)乒乓球被称为我国的“国球”.甲、乙两名运动员进行乒乓球比赛,其中每局中甲获胜的概率为,乙获胜的概率为,每局比赛都是相互独立的.
①若比赛为五局三胜制,则需比赛五局才结束的概率为__________.
②若两人约定其中一人比另一人多赢两局时比赛结束,则需要进行的比赛局数的数学期望为__________.
附:当时,,.
【答案】 ##0.2109375
【分析】由已知可得前四局双方为,即可求出答案①;由已知可推得,需要比赛局数为偶数,且.进而可设,,根据错位相加法求出的前项和为,进而求出的极限即可得出答案.
【详解】①需比赛五局才结束,则说明前四局双方为,概率为.
②假设比赛局数为随机变量,
由已知,需比赛局数为偶数,则可取.
则,
当时,双方前局战为平局,且任意前(,且)局双方均战为平局,
则,显然,满足该式.
设,则有,
所以,是以为首项,为公比的等比数列.
设,则.
设的前项和为,则,
,
作差可得,
,
整理可得,.
由题意可得,,.
则.
故答案为:;.
【点睛】关键点点睛:当时,由题意可知,双方前局战为平局,且任意前(,且)局双方均战为平局,
则.
四、解答题
11.(2023·全国·高三专题练习)第二十二届卡塔尔世界杯足球赛(FIFAWorldCupQatar2022)决赛中,阿根廷队通过扣人心弦的点球大战战胜了法国队.某校为了丰富学生课余生活,组建了足球社团.足球社团为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:
喜欢足球
不喜欢足球
合计
男生
40
女生
30
合计
(1)根据所给数据完成上表,并判断是否有的把握认为该校学生喜欢足球与性别有关?
(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知男生进球的概率为,女生进球的概率为,每人射门一次,假设各人射门相互独立,求3人进球总次数的分布列和数学期望.
附:.
【答案】(1)列联表见解析,有
(2)分布列见解析,
【分析】(1)利用独立性检验的方法求解;
(2)根据独立事件的概率公式和离散型随机变量的分布列的定义求解.
【详解】(1)列联表如下:
喜欢足球
不喜欢足球
合计
男生
60
40
100
女生
30
70
100
合计
90
110
200
有的把握认为该校学生喜欢足球与性别有关
(2)3人进球总次数的所有可能取值为,
的分布列如下:
0
1
2
3
的数学期望.
12.(2023秋·安徽黄山·高二统考期末)如图,四棱锥中,四边形是等腰梯形,,与相交于点O,平面,,,,是线段上一点,且.
(1)求证:直线平面;
(2)当时,求平面与平面所成锐二面角的余弦值.
【答案】(1)证明见解析
(2)
【分析】(1)首先判断△是等腰直角三角形,结合及、得到,则,根据线面平行的判定求证即可;
(2)求证两两垂直,构建空间直角坐标系并分别求出面、面的法向量,应用空间向量夹角的坐标公式求锐二面角的余弦值.
【详解】(1)因为四边形是等腰梯形,,所以,
所以,又,所以△是等腰直角三角形,
因为,所以,连接,
因为四边形是等腰梯形,,所以,
因为,所以,
因为,所以,
所以,而平面,平面,
所以平面.
(2)由于平面,平面,则,
又,故两两垂直,
以为原点,分别为轴建立空间直角坐标系(如图所示),
则,
设面的法向量为,则,可得,
设面的法向量为,则,可得,
所以平面与平面所成锐二面角的余弦值为.
13.(2023·广东汕头·统考一模)已知函数.
(1)若函数在处取得极值,求的值及函数的单调区间;
(2)若函数有两个零点,求的取值范围.
【答案】(1),单调递减区间为,单调递增区间为.
(2)
【分析】(1)求出函数的定义域与导函数,依题意求出求的值,令,利用导数说明的单调性,即可得到的单调性,从而求出函数的单调区间;
(2)依题意可得,设函数,则,利用导数说明的单调性,即可得到,则只需在上有两个根,然后构造新函数求的取值范围.
【详解】(1)函数定义域为,,在处取得极值,则,
所以,此时,
令,,则,
所以在上单调递增,所以在上单调递增,且,
所以当时,,单调递减,当时,,单调递增.
故的单调递减区间为,单调递增区间为.
(2)依题意即在上有两个根,
整理为,即,
设函数,则上式为,
因为恒成立,所以单调递增,所以,
所以只需在上有两个根,
令,,则,
当时,,当时,,
故在处取得极大值即最大值,,
且当时,当时,
要想在上有两个根,只需,解得,
所以的取值范围为.
【点睛】方法点睛:同构变形是一种处理含有参数的函数常用方法,特别是指对同构,对不能参变分离的函数可以达到化简后可以参变分离的效果.
相关试卷
这是一份打卡第八天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版
这是一份打卡第七天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第七天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第七天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份打卡第五天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第五天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第五天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。