初中数学3 反证法图文课件ppt
展开3.反证法
【基本目标】
1.理解反证法.
2.会用反证法证明较简单的题.
【教学重点】
用反证法证明几何命题.
【教学难点】
反证法中渗透“正难则反”的思想.
一、创设情景,导入新课
出示多媒体,展示《路旁苦李》的故事的动画场景,引入反证法的课题.
二、师生互动,探究新知
活动
1反证法的步骤.
教师给出问题:如果你当时也在场,你会怎么办?五戎是怎么判断李子是苦的?你认为他的判断正确吗?
学生讨论交流,选代表发言.
如果李子不是苦的,路旁的人很多,早就没有这么多李子.
教师出示,若a2+b2≠c2(a≤b≤c),则△ABC不是直角三角形,你能按照刚才五戎的方法推理吗?
学生活动,代表展示.若∠C是直角,则a2+b2=c2,而a2+b2≠c2,这是不可能的,即△ABC不是直角三角形.
【教师归纳】先假设结论的反面是正确的;然后经过演绎推理,推出与基本事实、已证定理、定义或已知条件相矛盾;从而说明假设不成立,进而得出原命题正确.即:一、反设;二、推理得矛盾;三、假设不成立,原命题正确.
活动2用反证法证明.
教材P116例5.
【教师活动】原命题结论的反向是什么?按照假设可以得到矛盾吗?
【学生活动】独立完成,交流成果,发言展示.
教材P116例6.
【教师活动】△ABC至少有一个内角小于或等于60°的反向是什么?按照假设可以推出矛盾吗?
【学生活动】独立完成,交流成果,发言展示.
【教学说明】在几何命题中涉及到有“至少”“至多”“唯一”时,直接不易证明,可考虑反证法.
三、随堂练习,巩固新知
完成练习册中本课时对应的课后作业部分,教师巡视并及时点评,主要是证明格式是否规范.
四、典例精析,拓展新知
例求证:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
【教师活动】(1)你首选的是哪一种证明方法?(2)如果你选择反证法,先怎样假设?结果和什么产生矛盾?(3)能不用反证法证明吗?你准备怎样证明?
要求按问题解决的四个步骤进行:理解题意(画出图形,写出已知求证);制订计划(选择证明方法,找出证明思路);执行计划(写出证明过程).
【学生活动】讨论交流后独立完成.
五、运用新知,深化理解.
完成教材P117练习第1、2题.
六、师生互动,课堂小结
这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师总结.
完成练习册中本课时对应的课后作业部分.
反证法是一种重要的证题方法,也是初中数学的难点,如何突破这一难点,并为学生更好地理解和掌握是需要教师精心设计的.在教学时应注意三个思维障碍:1.思维方向的转换,不能总用直接法;2.证明步骤存在障碍;3.归谬起点推证存在障碍.为使学生更好地理解并掌握反证法,应积极引导学生克服上述思维上的障碍,并通过有关题目训练,使学生掌握反证法.
教师在教学中应强调当结论的反面不止一种情况时,应穷举;“归谬”这一步应包含“归导”与“揭谬”两个层次.
冀教版八年级上册17.5 反证法课文配套ppt课件: 这是一份冀教版八年级上册17.5 反证法课文配套ppt课件,共24页。PPT课件主要包含了老师的困惑,还有很多呢,谁能帮老师解决,a不平行于b,a﹤b,b是0或负数,a不垂直于b,一个也没有,至少有两个,课堂小结等内容,欢迎下载使用。
华师大版八年级上册12.5 因式分解背景图ppt课件: 这是一份华师大版八年级上册12.5 因式分解背景图ppt课件,文件包含125因式分解pptx、习题125pptx、第1课时因式分解1doc、第2课时因式分解2doc等4份课件配套教学资源,其中PPT共27页, 欢迎下载使用。
初中数学冀教版八年级上册17.5 反证法集体备课课件ppt: 这是一份初中数学冀教版八年级上册17.5 反证法集体备课课件ppt,共16页。PPT课件主要包含了综合法,由因导果,QP1,P1P2,执果索因,直接证明的方法,1比较法,作差比较法,作商比较法,2综合法等内容,欢迎下载使用。