数学七年级下册5.2.1 平行线同步测试题
展开这是一份数学七年级下册5.2.1 平行线同步测试题,共4页。
解题技巧专题:平行线中作辅助线的方法
类型一 含一个拐点的平行线问题
1.如图,AB∥EF,CD⊥EF于点D.若∠ABC=40°,则∠BCD的度数为( )
A.140° B.130° C.120° D.110°
第1题图 第2题图
2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为( )
A.20° B.30° C.40° D.70°
3.如图,某城市的两座高楼顶部各装有一个射灯,当光柱相交在同一个平面时,∠1+∠2+∠3=________°.
第3题图 第4题图
4.(2017·枣庄中考)将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.
5.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得到的关系中任选一个加以说明.【方法8】
类型二 含两个或多个拐点的平行线问题
6.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为( )
A.∠1+∠2-∠3 B.∠1+∠3-∠2
C.180°+∠3-∠1-∠2 D.∠2+∠3-∠1-180°
第6题图 第7题图
7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________°.
8.如图,AB∥CD,试解决下列问题:
(1)如图①,∠1+∠2=________;
(2)如图②,∠1+∠2+∠3=________;
(3)如图③,∠1+∠2+∠3+∠4=________;
(4)如图④,试探究∠1+∠2+∠3+∠4+…+∠n=__________.
9.(1)如图①,AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?请说明理由;
(2)如图②,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.
参考答案与解析
1.B 解析:过点C向右作CG∥AB,由题意可得AB∥EF∥CG,∴∠B=∠BCG,∠GCD=90°,则∠BCD=40°+90°=130°.故选B.
2.B 解析:如图,过点C作CF∥DE,则AB∥DE∥CF,∴∠BCF=∠ABC=70°,∠CDE+∠DCF=180°,∴∠DCF=180°-∠CDE=180°-140°=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故选B.
3.360
4.15° 解析:如图,过A点作AB∥a,∴∠1=∠2.∵a∥b,∴AB∥b,∴∠3=∠4=30°.∵∠2+∠3=45°,∴∠2=15°,∴∠1=15°.
5.解:如图①,过点P作PF∥AB,则AB∥PF∥CD.∴∠PAB=∠APF,∠PCD=∠FPC,∴∠APC=∠APF+∠FPC=∠PAB+∠PCD;
如图②,过点P作PF∥AB,则AB∥PF∥CD.∴∠PAB+∠APF=180°,∠PCD+∠FPC=180°,∴∠APC+∠PAB+∠PCD=360°;
如图③,过点P作PF∥AB,则PF∥AB∥CD.∴∠FPA+∠PAB=180°,∠FPA+∠APC+∠PCD=180°,∴∠PAB=∠APC+∠PCD;
如图④,过点P作PF∥AB,则PF∥AB∥CD.∴∠FPA=∠PAB,∠FPA+∠APC=∠PCD,∴∠PAB+∠APC=∠PCD.
6.D 解析:如图,过点E作EG∥AB,过点F作FH∥CD.∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2-∠1.∵EG∥FH,∴∠EFH=180°-∠GEF=180°-(∠2-∠1)=180°-∠2+∠1,∴∠CFH=∠3-∠EFH=∠3-(180°-∠2+∠1)=∠3+∠2-∠1-180°.∵FH∥CD,∴∠4=∠CFH=∠3+∠2-∠1-180°.故选D.
7.140 解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD.∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.
8.(1)180° (2)360° (3)540° (4)(n-1)·180°
解析:(1)如图①,∵AB∥CD,∴∠1+∠2=180°;
(2)如图②,过点E作直线EF平行于AB.∵AB∥CD,∴AB∥EF∥CD,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°.
(3)过点E,F作EG,FH平行于AB.∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°,∴∠1+∠2+∠3+∠4=540°.
(4)根据上述规律,显然作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补,即可得到n个角的和是(n-1)·180°.
9.解:(1)∠2+∠4=∠1+∠3+∠5.理由如下:如图,分别过点E,G,M作EF∥AB,GH∥AB,MN∥AB.∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5.
(2)∠2+∠4+∠6=∠1+∠3+∠5+∠7.结论:开口朝左的所有角的度数之和与开口朝右的所有角的度数之和相等.
相关试卷
这是一份中考训练解题技巧专题:平行线中作辅助线的方法专项训练与解析,共3页。试卷主要包含了如图,给出下列三个论断等内容,欢迎下载使用。
这是一份专题1.31 证明三角形全等作辅助线方法-作平行线(专项练习)-八年级数学上册基础知识专项讲练(苏科版),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大七下数学 解题技巧专题:平行线中作辅助线的方法试卷,共4页。