第4章 一次函数 湘教版数学八年级下册单元检测题(含答案)
展开第4章一次函数单元检测与简答
一.选择题(共10小题)
1.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是( )
A.金额 B.数量 C.单价 D.金额和数量
2.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是( )
A.s=10+60t B.s=60t C.s=60t﹣10 D.s=10﹣60t
3.函数的自变量的取值范围是( )
A.x≠3 B.x≥﹣2 C.x≥﹣2且x≠3 D.x≥3
4.已知函数y=,则当函数值y=8时,自变量x的值是( )
A.﹣2或4 B.4 C.﹣2 D.±2或±4
5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是( )
A. B.
C. D.
6.下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用公式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
7.下列函数中,是一次函数的是( )
A. B.y=﹣2x C.y=x2+2 D.y=kx+b(k、b是常数)
8.函数y=5x﹣4的图象可由函数y=5x的图象沿y轴( )
A.向上平移4个单位得到 B.向下平移4个单位得到
C.向左平移4个单位得到 D.向右平移4个单位得到
9.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是( )
A.0 B.3 C.﹣3 D.﹣7
10.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
二.填空题(共8小题)
11.如果+3是一次函数,则m的值是 .
12.下列函数关系式:①y=2x﹣1;②;③;④s=20t.其中表示一次函数的有 (填序号)
13.如图为一次函数y=kx﹣b的函数图象,则k•b 0(请在括号内填写“>”、“<”或“=”)
14.直线y=kx+b(k≠0)的图象如图所示,由图象可知当y<0时,x的取值范围是 .
15.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m n(填>、<或=)
16.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是 .
17.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为 .
18.在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长16.8cm.写出弹簧长度L(cm)与所挂物体质量x(kg)之间的函数表达式 .
三.解答题(共6小题)
19.已知y=(k﹣1)x|k|﹣k是一次函数.
(1)求k的值;
(2)若点(2,a)在这个一次函数的图象上,求a的值.
20.已知直线y=﹣x+3与x轴交于点A,与y轴交于点B,直线y=2x+b经过点B且与x轴交于点C.求△ABC的面积.
21.已知一次函数y=kx+b,当x=2时y的值为1,当x=﹣1时y的值为﹣5.
(1)在所给坐标系中画出一次函数y=kx+b的图象;
(2)求k,b的值;
(3)将一次函数y=kx+b的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y轴的交点坐标.
22.已知正比例函数y=kx图象经过点(3,﹣6),求:
(1)这个函数的解析式;
(2)判断点A(4,﹣2)是否在这个函数图象上;
(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.
23.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
24.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还.租赁费用y(元)随时间x(天)的变化图象为折线OA﹣AB﹣BC,如图所示.
(1)当租赁时间不超过3天时,求每日租金.
(2)当6≤x≤9时,求y与x的函数解析式.
(3)甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元.请问乙租这款汽车多长时间?
2017—2018学年湘教版八年级数学下册第4章《一次函数》单元检测简答
一.选择题(共10小题)
1. D. 2. A. 3. C. 4. A. 5. B. 6. D. 7. B. 8. B.
9. B. 10. D.
二.填空题(共8小题)
11. ﹣1 . 12. ①②④ 13. < 0 14. x<2 . 15. >
16. m>1 .17. y=﹣x+1 .18. L=0.6x+15 .
三.解答题(共6小题)
19.已知y=(k﹣1)x|k|﹣k是一次函数.
(1)求k的值;
(2)若点(2,a)在这个一次函数的图象上,求a的值.
【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;
(2)将点的坐标代入函数的解析式,从而可求得a的值.
【解答】解:(1)∵y是一次函数,
∴|k|=1,解得k=±1.
又∵k﹣1≠0,
∴k≠1.
∴k=﹣1.
(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.
∵(2,a)在y=﹣2x+1图象上,
∴a=﹣4+1=﹣3.
【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.
20.已知直线y=﹣x+3与x轴交于点A,与y轴交于点B,直线y=2x+b经过点B且与x轴交于点C.求△ABC的面积.
【分析】先求出A、B两点的坐标,再把B点坐标代入直线y=2x+b求出b的值,故可得出C点坐标,根据三角形的面积公式即可得出结论.
【解答】解:∵当 y=0 时,x=;当 x=0 时,y=3,
∴A(,0),B(0,3),
∵直线 y=2x+b 经过点 B,
∴b=3,
∴直线 y=2x+b 的解析式为 y=2x+3,
∴C(﹣,0),
∴AC=+=6,
∴S△ABC=×6×3=9.
【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合2此函数的解析式是解答此题的关键.
21.已知一次函数y=kx+b,当x=2时y的值为1,当x=﹣1时y的值为﹣5.
(1)在所给坐标系中画出一次函数y=kx+b的图象;
(2)求k,b的值;
(3)将一次函数y=kx+b的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y轴的交点坐标.
【分析】(1)依据两对对应值作为点的坐标,即可在所给坐标系中画出一次函数y=kx+b的图象;
(2)将已知的两对x与y的值代入一次函数解析式,即可求出k与b的值;
(3)依据一次函数图象平移的规律,即可得到新的函数及其图象与x轴,y轴的交点坐标.
【解答】解:(1)函数图象如图所示,
(2)将当x=2,y=1;x=﹣1,y=﹣5分别代入一次函数解析式得:
,
解得.
(3)由(2)可得,一次函数的关系式为y=2x﹣3.
一次函数y=2x﹣3的图象向上平移4个单位长度,
可得y=2x+1,
令y=0,则x=﹣;令x=0,则y=1,
∴与x轴,y轴的交点坐标分别为(﹣,0)和(0,1).
【点评】本题考查了一次函数的图象与几何变换,以及用待定系数法求一次函数解析式,将直线平移,其规律是:上加下减,左加右减.
22.已知正比例函数y=kx图象经过点(3,﹣6),求:
(1)这个函数的解析式;
(2)判断点A(4,﹣2)是否在这个函数图象上;
(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.
【分析】(1)利用待定系数法把(3,﹣6)代入正比例函数y=kx中计算出k即可得到解析式;
(2)将A点的横坐标代入正比例函数关系式,计算函数值,若函数值等于﹣2,则A点在这个函数图象上,否则不在这个函数图象上;
(3)根据正比例函数的性质:当k<0时,y随x的增大而减小,即可判断.
【解答】解:(1)∵正比例函数y=kx经过点(3,﹣6),
∴﹣6=3•k,
解得:k=﹣2,
∴这个正比例函数的解析式为:y=﹣2x;
(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,
∴点A(4,﹣2)不在这个函数图象上;
(3)∵k=﹣2<0,
∴y随x的增大而减小,
∵x1>x2,
∴y1<y2.
【点评】此题考查了用待定系数求正比例函数的关系式,判断点是否在函数的图象上及正比例函数的性质,解(1)的关键是能正确代入即可;解(2)的关键是将A点的横坐标代入正比例函数关系式,计算函数值;解(3)的关键是:熟记当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.
23.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
【分析】(1)根据单价乘以数量,可得函数解析式;
(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.
【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,
乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50 (x>200),
y2=x (0≤x≤200);
(2)由y1>y2,得0.85x>0.75x+50,
x>500,
当x>500时,到乙商场购物会更省钱;
由y1=y2得0.85x=0.75x+50,
x=500时,到两家商场去购物花费一样;
由y1<y2,得0.85x<0.75x+500,
x<500,
当x<500时,到甲商场购物会更省钱;
综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.
【点评】本题考查了一次函数的应用,分类讨论是解题关键.
24.某汽车租赁公司对某款汽车的租赁方式按时段计费,该公司要求租赁方必须在9天内(包括9天)将所租汽车归还.租赁费用y(元)随时间x(天)的变化图象为折线OA﹣AB﹣BC,如图所示.
(1)当租赁时间不超过3天时,求每日租金.
(2)当6≤x≤9时,求y与x的函数解析式.
(3)甲、乙两人租赁该款汽车各一辆,两人租赁时间一共为9天,甲租的天数少于3天,乙比甲多支付费用720元.请问乙租这款汽车多长时间?
【分析】(1)根据函数图象由总租金÷租期就可以得出每天的租金;
(2)直接运用待定系数法就可以求出y与x之间的函数关系式;
(3)设乙租这款车a天,就有甲租用的时间为(9﹣a)天,分别表示出甲乙的租金从而建立方程求出其解即可.
【解答】解:(1)由函数图象,得
450÷3=150元;
(2)设BC的解析式为y=kx+b,由函数图象,得
,
解得:,
∴y与x之间的函数关系式为:y=210x﹣450(6≤x≤9);
(3)设乙租这款车a(6<a<9)天,就有甲租用的时间为(9﹣a)天,由题意,得
∴甲的租金为150(9﹣a),
乙的租金为210a﹣450,
∴210a﹣450﹣150(9﹣a)=720,
解得:a=7.
答:乙租这款汽车的时间是7天.
【点评】本题考查了单价=总价÷数量的运用,待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时三个问题是递进关系,必须依次解决每个问题才能求出最后一个问题.