全真模拟卷01-2023年高考数学(理)全真模拟卷(全国卷)
展开绝密★启用前|学科网试题命制中心
2023年高考全真模拟卷(一)
理科数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数的共轭复数为,且,则下列四个选项中,可以为( )
A. B. C. D.
2.已知全集,,则( )
A. B. C. D.
3.若角的终边经过点,则( )
A. B. C. D.
4.若平面向量与的夹角为,,,则等于( ).
A. B. C.4 D.12
5.若实数满足约束条件则的最大值是( )
A.2 B.4 C.6 D.8
6.已知奇函数在上的最大值为,则( )
A.或3 B.或2 C.2 D.3
7.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早 多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图 是阳马,,,,.则该阳马的外接球的表面积为( )
A. B.
C. D.
8.从今年8月开始,南充高中教师踊跃报名志愿者参加各街道办、小区、学校的防疫工作,彰显师者先行、师德担当的精神,防疫工作包含扫描健康码、取咽拭子、后勤协调三项工作,现从6名教师自愿者中,选派4人担任扫描健康码、取咽拭子、后勤协调工作,要求每项工作都有志愿者参加,不同的选派方法共有( )种
A.90 B.270 C.540 D.1080
9.已知是椭圆的右焦点,为的上顶点,直线与椭圆的另一个交点为,的面积为,则的离心率为( )
A. B. C. D.
10.如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n项和为,设,将数列中的整数项依次取出组成新的数列记为,则的值为( )
A.5052 B.5057 C.5058 D.5063
11.日光射入海水后,一部分被海水吸收(变为热能),同时,另一部分被海水中的有机物和无机物有选择性地吸收与散射.因而海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是平均消光系数(也称衰减系数),(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海区10米深处的光强是海面光强的,则该海区消光系数的值约为( )(参考数据:,)
A. B. C. D.
12.已知,则的大小关系为( )
A. B.
C. D.
第Ⅱ卷
二、填空题(本题共4小题,每小题5分,共20分)
13.已知的展开式中,二项式系数之和为64,则展开式中常数项为______.
14.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则______.
15.已知向量,,若,则的值为______.
16.如图,在矩形中,为的中点,点分别在线段上运动(其中不与重合,不与重合),且,沿将折起,得到三棱锥.当三棱锥体积最大时,其外接球的体积为__________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)
已知等差数列满足,,的前n项和为.
(1)求及的通项公式;
(2)记,求证:.
18.(本小题满分12分)
某电视台“挑战主持人”的节目中,挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得5分,回答不正确得0分,第三个问题回答正确得10分,回答不正确得-5分.如果一位挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总得分不低于5分,就算他闯关成功.
(1)求至少回答对一个问题的概率;
(2)求这位挑战者回答这三个问题的总得分X的分布列;
(3)求这位挑战者闯关成功的概率.
19.(本小题满分12分)
如图,等腰梯形中,//,,,为中点,以为折痕把折起,使点到达点的位置(平面).
(1)证明:;
(2)若直线与平面所成的角为,求平面与平面夹角的余弦值.
20.(本小题满分12分)
已知双曲线C:的一条渐近线方程为,焦点到渐近线的距离为1.
(1)求双曲线C的标准方程与离心率;
(2)已知斜率为的直线与双曲线C交于x轴下方的A,B两点,O为坐标原点,直线OA,OB的斜率之积为,求的面积.
21.(本小题满分12分)
已知函数.
(1)若函数有两个零点,求的取值范围;
(2)设是函数的两个极值点,证明:.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
22.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,圆心为的圆的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求圆的极坐标方程;
(2)设点在曲线上,且满足,求点的极径.
23.(本小题满分10分)选修4-4:坐标系与参数方程
已知函数.
(1)求不等式的解集;
(2)若恒成立,求实数的取值范围.
全真模拟卷02(解析版)-2023年高考数学(文)全真模拟卷(全国卷): 这是一份全真模拟卷02(解析版)-2023年高考数学(文)全真模拟卷(全国卷),共16页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知圆台上下底面半径之比为1,如图所示,函数,已知抛物线等内容,欢迎下载使用。
全真模拟卷02(解析版)-2023年高考数学(理)全真模拟卷(全国卷): 这是一份全真模拟卷02(解析版)-2023年高考数学(理)全真模拟卷(全国卷),共18页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知圆台上下底面半径之比为1,在的展开式中,的系数为,如图所示,函数,已知抛物线等内容,欢迎下载使用。
全真模拟卷01(解析版)-2023年高考数学(理)全真模拟卷(全国卷): 这是一份全真模拟卷01(解析版)-2023年高考数学(理)全真模拟卷(全国卷),共17页。试卷主要包含了本试卷分第Ⅰ卷两部分,若实数满足约束条件则的最大值是,已知奇函数在上的最大值为,则等内容,欢迎下载使用。