终身会员
搜索
    上传资料 赚现金

    2023年中考押题预测卷01(苏州卷)-数学(参考答案)

    立即下载
    加入资料篮
    2023年中考押题预测卷01(苏州卷)-数学(参考答案)第1页
    2023年中考押题预测卷01(苏州卷)-数学(参考答案)第2页
    2023年中考押题预测卷01(苏州卷)-数学(参考答案)第3页
    还剩15页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考押题预测卷01(苏州卷)-数学(参考答案)

    展开

    这是一份2023年中考押题预测卷01(苏州卷)-数学(参考答案),共18页。试卷主要包含了/49度,20/二十,【答案】0,【答案】无解等内容,欢迎下载使用。
    2023中考押题预测卷01苏州卷】数学·参考答案12345678ABDDDCDA9101121213/49141520/二十16/ 17.【答案】0【分析】根据二次根式的混合计算法则,零指数幂和负整数指数幂以及有理数的乘方等计算法则求解即可.【详解】解:原式 ··············································1 ···································································2 ···············································································5【点睛】本题主要考查了二次根式的混合计算,零指数幂,负整数指数幂,有理数的乘方,正确计算是解题的关键.18.【答案】无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】解:去分母得:············································ 2解得: ···································································· 3检验:当时, ······················································· 4是增根,分式方程无解.·····················································5【点睛】此题考查了解分式方程,利用了转化的思想,把方程的解代入原方程进行检验是解题的关键.19.【答案】化简:,值:【分析】先利用完全平方公式与平方差公式进行乘法运算,再合并得到化简的结果,再把代入化简后的代数式进行计算即可.【详解】解: ·······························································1·············································································3时,原式····························································6【点睛】本题考查的是整式的乘法运算,化简求值,熟练的利用平方差公式与完全平方公式进行简便运算是解本题的关键.20.【答案】(1)(2) 【分析】(1)先求出这组数中质数的个数,再利用概率公式解答即可;2)首先根据题意可直接列出所有可能出现的结果,再算出这个两位数能被3整除的概率.【详解】(1)解:数字1245中,25是质数,则随机抽取1张,抽到卡片数字是奇数的概率为故答案为:········································································22)解:列表如下: 12451 121415221 242544142 455515254 出现的等可能性结果有12种,两位数能被3整除的有,1215212442455154共有8种,················································4P(两位数能被3整除)························································6【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,熟记概率公式是解决本题的关键.21.【答案】(1)见解析(2) 【分析】(1)求出,根据全等三角形的判定定理得出,推出,根据角平分线性质得出即可;2)证明,得到,利用得到,再利用线段的和差计算即可.【详解】(1解:证明:中,·························································2平分·····································································32中,······························································4·········································································5··························································6【点睛】本题考查了角平分线的判定,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,全等三角形的对应边相等,对应角相等.22.【答案】(1)(2)(3) 【分析】(1)根据数据统计的方法以及各组数据之和等于样本容量可得答案;2)根据中位数、众数的定义可求出的值;3)求出样本中甲乙两个班优秀所占的百分比,进而估计总体中优秀所占的百分比,再乘总人数即可.【详解】(1)解:由题意可知,乙班在的数据有个,在的有,个,故答案为:·······································································22)甲班人中得分出现次数最多的是分,共出现次,因此甲班学生成绩的众数将乙班名学生的成绩从小到大排列,处在中间位置的两个数的平均数为,因此中位数故答案为:·····································································43(人),答:甲班、乙班共人为样本估计全年级人中优秀人数约为人.·························8【点睛】本题考查中位数、众数,频数分布表,掌握中位数、众数以及频率是正确解答的前提.23.【答案】(1)(2) 【分析】(1)将两点代入反比例函数解析式,,可得,解得的值,即可求出两点的坐标,用待定系数法即可求出一次函数和反比例函数的表达式;2)令,求出点坐标,根据三点坐标求出的面积,再得到的面积,设,利用三角形面积求出的值即可.【详解】(1)由题意,得,解得代入,得反比例函数表达式为·····························································2代入,得一次函数表达式为···························································42)令,则得,的坐标为······································································5,则,得解得:··································································7································································8【点睛】本题考查了一次函数和反比例函数的综合应用,反比例函数与几何综合,待定系数法求函数解析式,三角形的面积的计算,正确求出一次函数和反比例函数解析式是解题的关键.24.【答案】(1)见解析(2) 【分析】(1)先连接,由切线的性质,平行线的性质,等腰三角形的性质推出,即可证明平分2)平行线等分线段定理得到,推出的中位线,求出,得到的长,由相似三角形的性质即可解决问题.【详解】(1证明:连接·······································································1平分·····································································32)解:的中位线,······································································5····························································7的值是·······································································8【点睛】本题考查切线性质,相似三角形的判定和性质,平行线的性质,角平分线的定义,三角形中位线定理,关键是连接求出的长.25.【答案】(1)甲生产队每天需收割费元、乙生产队每天需收割费元.(2)①甲乙两生产队分别工作的天数共有5种可能.费用最少的方案是甲生产队工作5天,乙生产队工作34天,最低费用为元. 【分析】(1)设甲生产队每天需收割费x元、乙生产队每天需收割费元,根据当甲生产队所需收割费为5000元,乙生产队所需收割费为4000元时,两生产队工作天数刚好相同列出方程,解方程并检验即可;2设甲生产队工作m天,则乙生产队工作n天.由题意得到 ,且 ,由得到,整理得到关于m的一元一次不等式组,解得,由是正整数得到甲乙两生产队分别工作的天数共有5种可能.得到总费用,根据一次函数的性质得到费用最少的方案和最少费用即可.【详解】(1)解;设甲生产队每天需收割费x元、乙生产队每天需收割费元, 由题意,··································································1解得··········································································2经检验,是分式方程的解且符合题意.答:甲生产队每天需收割费元、乙生产队每天需收割费元.···························32设甲生产队工作m天,则乙生产队工作n天.由题意, ,且 得到代入得到,,即·····················4································································5解得是正整数,·········································7甲乙两生产队分别工作的天数共有5种可能.总费用···········································8wm的增大而增大,··································································9时,w有最小值,此时即费用最少的方案是甲生产队工作5天,乙生产队工作34天,最低费用为元.··············10【点睛】本题考查了分式方程的实际应用,一元一次不等式组的应用,一次函数的实际应用,考查较为全面,对于一次函数而言,当时,yx的增大而增大,当时,yx的增大而减小.26.【答案】(1)(2)①(3)存在, 【分析】(1)令,则,已知点的坐标,即可求得点的坐标,令,即可求得点的坐标;2求得,根据平行线分线段成比例求解即可;过点轴交于点,求得直线的解析式,用含的式子表示,根据二次函数的性质即可得出结论;3)假设存在点使得,即,过点轴交抛物线于点,由,可知平分,延长轴于点,易证为等腰三角形,求得,则直线的解析式为,令,可得结论.【详解】(1)解:令,则解得:,则故答案为:·······························································22)解:轴,,则解得:,或·············································································3·······································································4如图,过点轴交于点设直线的解析式为解得直线的解析式为·······················································5设点的横坐标为,则,则时,的最大值为·······················································63)解:假设存在点使得,即,过点轴交抛物线于点,延长x轴于点M,如图,轴,为等腰三角形,·································································7············································································8设直线的解析式为解得直线的解析式为······················································9解得:(与点重合,舍去),存在点满足题意,此时·······················································10【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,平行线分线段成比例,二次函数的性质,角度的存在性相关内容,熟练掌握知识点并灵活运用是解题的关键.27.【答案】(1)见解析(2)①3 【分析】(1)利用证明,再由等量代换证明2上截取,连接于点,过点于点,由(1)可知,则,再由平行线的性质可得,即,则,由,可得,从而得到等式,求出,即可求延长,使,连接于点,过点于点,由(1)可知,则,可得,设,则,可知,再由,分别得到,从而得到方程,求出,即可求【详解】(1)解:证明:是等边三角形,································································1···································································2············································32上截取,连接于点,过点于点由(1)可知·········································································4,则,即·········································································5解得(舍),·········································································6延长,使,连接于点,过点于点由(1)可知·········································································7,则····································································8解得·······································································10【点睛】本题考查了等边三角形的性质,三角形全等的判定及性质,平行分线段,熟练掌握性质定理是解题的关键.
     

    相关试卷

    2023年中考押题预测卷01(苏州卷)-数学(全解全析):

    这是一份2023年中考押题预测卷01(苏州卷)-数学(全解全析),共23页。

    2023年中考押题预测卷01(苏州卷)-数学(考试版)A4:

    这是一份2023年中考押题预测卷01(苏州卷)-数学(考试版)A4,共10页。

    2023年中考押题预测卷01(苏州卷)-数学(参考答案):

    这是一份2023年中考押题预测卷01(苏州卷)-数学(参考答案),共14页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map