高考数学二轮强化练习04 概率与统计(2份打包,原卷版+教师版)
展开查补易混易错点04 概率与统计
1.关于两个计数原理应用的注意事项
分类加法计数原理和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以完成这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
2.排列、组合问题的求解方法与技巧
(1)特殊元素或特殊位置优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题排除法处理.(7)正难则反,等价条件.
3.二项式定理应用时的注意事项
(1)注意区别“项的系数”与“二项式系数”,审题时要仔细.
项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.
(2)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.
4.应用互斥事件的概率加法公式时,一定要先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.
5.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
6.易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.
7.要注意概率P(A|B)与P(AB)的区别
(1)在P(A|B)中,事件A,B发生有时间上的差异,B先A后;在P(AB)中,事件A,B同时发生.
(2)样本空间不同,在P(A|B)中,事件B成为样本空间;在P(AB)中,样本空间仍为Ω,因而有P(A|B)≥P(AB).
8.(1)易忘判定随机变量是否服从二项分布,盲目使用二项分布的均值和方差公式计算致误.
(2)涉及求分布列时,要注意区分是二项分布还是超几何分布.
1.(2023·河南·校联考模拟预测)数学与生活密不可分,在一次数学讨论课上,老师安排5名同学讲述圆、椭圆、双曲线、抛物线在实际生活中的应用,要求每位学生只讲述一种曲线,每种曲线至少有1名学生讲述,则可能的安排方案的种数为( )
A.240 B.480 C.360 D.720
【答案】A
【解析】有四种曲线,要求每位学生只讲述一种曲线,
则5名同学分成2,1,1,1四组,共有种情况,
再将四组学生分配给四种曲线,一共有种情况,
则可能的安排方案的种数为种,
故选:A.
2.(2023·河南·校联考模拟预测)若的展开式中的系数为40,则k=( )
A.2 B.4 C. D.
【答案】C
【解析】因为的展开式的通项公式为,且的系数为40,
所以,即,
解得.
故选:C
3.(2023·全国·模拟预测)的展开式中的系数为( )
A.85 B.5 C.-5 D.-85
【答案】A
【解析】的展开式的通项为,
则,,
从而的展开式中的系数为.
故选:A.
4.(2023·黑龙江哈尔滨·哈九中校考二模)已知随机变量 分别满足,,且期望,又,则( )
A. B. C. D.
【答案】C
【解析】由题意知,,,
故,
由,知,故,
故选:C
5.(2023·江苏·统考一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为( )
A.0.9 B.0.7 C.0.3 D.0.1
【答案】D
【解析】由题得:,故,
因为,所以根据对称性得:.
故选:D.
6.(2023·江苏·统考一模)“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则( )
A. B. C. D.
【答案】D
【解析】由题可得,,
所以.
故选:D.
7.(2023·内蒙古呼和浩特·呼市二中校考模拟预测)以模型去拟合一组数据时,设,将其变换后得到线性回归方程,则( )
A. B. C. D.e
【答案】C
【解析】因为,所以,
令,所以,即.
故选:C
8.(2023·贵州毕节·统考二模)某市质量检测部门从辖区内甲、乙两个地区的食品生产企业中分别随机抽取9家企业,根据食品安全管理考核指标对抽到的企业进行考核,并将各企业考核得分整理成如下的茎叶图.由茎叶图所给信息,可判断以下结论中正确是( )
A.若,则甲地区考核得分的极差大于乙地区考核得分的极差
B.若,则甲地区考核得分的平均数小于乙地区考核得分的平均数
C.若,则甲地区考核得分的方差小于乙地区考核得分的方差
D.若,则甲地区考核得分的中位数小于乙地区考核得分的中位数
【答案】C
【解析】对于A:甲地区考核得分的极差为,乙地区考核得分的极差为,
即甲地区考核得分的极差小于乙地区考核得分的极差,故A错误;
对于B:甲地区考核得分的平均数为
乙地区考核得分的平均数为,
即甲地区考核得分的平均数大于乙地区考核得分的平均数,故B错误;
对于C:甲地区考核得分从小到大排列为:75,78,81,84,85,88,92,93,94
乙地区考核得分从小到大排列为:74,77,80,83,84,87,91,95,99
由以上数据可知,乙地区考核得分的波动程度比甲地区考核得分的波动程度大,
即甲地区考核得分的方差小于乙地区考核得分的方差,故C正确;
对于D:由茎叶图可知,甲地区考核得分的中位数为,乙地区考核得分的中位数为,则甲地区考核得分的中位数大于乙地区考核得分的中位数,故D错误;
故选:C
9.(2023·陕西咸阳·武功县普集高级中学统考二模)2022年卡塔尔世界杯足球赛落幕,这是历史上首次在卡塔尔和中东国家境内举行、也是第二次在亚洲举行的世界杯足球赛.有甲,乙,丙,丁四个人相互之间进行传球,从甲开始传球,甲等可能地把球传给乙,丙,丁中的任何一个人,以此类推,则经过三次传球后乙只接到一次球的概率为( )
A. B. C. D.
【答案】D
【解析】传球的结果可以分为:
分别传给3人时:乙丙丁,乙丁丙,丙乙丁,丙丁乙,丁乙丙,丁丙乙,共6种;
若传给2人时:乙丙乙,丙乙丙,乙丁乙,丁乙丁,丁丙丁,丙丁丙,共6种;
再传给甲的:乙甲乙,丙甲丙,丁甲丁,乙丙甲,乙甲丙,乙丁甲,乙甲丁,丙乙甲,丙甲乙,丁乙甲,丁甲乙,丙丁甲,丙甲丁,丁甲丙,丁丙甲,共15种;
共27种,只传乙一次的有16种,所以所求概率为
故选:D.
10.(2023·陕西西安·统考一模)某校高二年级学生举行中国象棋比赛,经过初赛,最后确定甲、乙、丙三位同学进入决赛.决赛规则如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,最后的胜者获得冠军,比赛结束.若经抽签,已知第一场甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,则( )
A.甲获得冠军的概率最大 B.甲比乙获得冠军的概率大
C.丙获得冠军的概率最大 D.甲、乙、丙3人获得冠军的概率相等
【答案】C
【解析】根据决赛规则,至少需要进行四场比赛,至多需要进行五场比赛,
(1)甲获得冠军有两种情况:
①共比赛四场结束,甲四连胜夺冠,概率为
②共比赛五场结束,并且甲获得冠军.则甲的胜、负、轮空结果共有四种情况∶胜胜胜负胜,
胜胜负空胜,胜负空胜胜,负空胜胜胜,概率分别为,即,
因此,甲最终获得冠军的概率为;
(2)乙获得冠军,与(1)同理,概率也为;
(3)丙获得冠军,概率为,
由此可知丙获得冠军的概率最大,即A,B,D错误,C正确,
故选∶C.
11.(多选题)(2023·江苏泰州·统考一模)一个袋中有大小、形状完全相同的3个小球,颜色分别为红、黄、蓝,从袋中先后无放回地取出2个球,记“第一次取到红球”为事件A,“第二次取到黄球”为事件,则( )
A. B.为互斥事件
C. D.相互独立
【答案】AC
【解析】正确;
可同时发生,即“即第一次取红球,第二次取黄球”,不互斥,错误;
在第一次取到红球的条件下,第二次取到黄球的概率为正确;
不独立,
D错误;
故选:AC.
12.(多选题)(2023·山东淄博联考二模)在某市高三年级举行的一次模拟考试中,某学科共有20000人参加考试.为了了解本次考试学生成绩情况,从中抽取了名学生的成绩(成绩均为正整数,满分为100分)进行统计,其成绩都在区间内.按照,,,,的分组作出频率分布直方图如图所示.其中,成绩落在区间内的人数为40,则下列结论正确的是( )
A.
B.图中
C.估计该市全体学生成绩的平均分为84分(同一组数据用该组区间的中点值作代表)
D.若对80分以上的学生授予“优秀学生”称号,则该市约有14000人获得该称号
【答案】BCD
【解析】对于A项,因为成绩落在区间内的人数为40,所以,故A项错误;
对于B项,由,得,故B项正确;
对于C项,学生成绩平均分为:,故C项正确;
对于D项,因为,故D项正确.
故选:BCD.
13.(多选题)(2023·山东临沂二模)在二项式的展开式中,下列说法正确的是( )
A.常数项是 B.各项的系数和是64
C.第4项二项式系数最大 D.奇数项二项式系数和为
【答案】AC
【解析】二项式的展开式通项为.
令,可得,故常数项是,A正确;
各项的系数和是,B错误;
二项式展开式共7项,故第4项二项式系数最大,C正确;
奇数项二项式系数和为,D错误.
故选:AC
14.(多选题)(2023·辽宁·校联考一模)随机变量且,随机变量,若,则( )
A. B. C. D.
【答案】ACD
【解析】因为且,
所以,故,,选项A正确,选项B错误;
因为,所以,
所以,解得,选项C正确;
,选项D正确.
故选:ACD.
15.(多选题)(2023·雅礼中学高三预测)2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京人民大会堂隆重召开,这是在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的一次十分重要的大会.某单位组织大家深入学习、领会党的二十大精神,并推出了10道有关二十大的测试题供学习者学习和测试.已知甲答对每道题的概率都是,乙能答对其中的6道题,规定每次测试都是从这10道题中随机抽出4道,答对一题加10分,答错一题或不答减5分,最终得分最低为0分,甲、乙两人答对与否互不影响,则( )
A.乙得40分的概率是 B.乙得分的数学期望是
C.甲得0分的概率是 D.甲、乙的得分都是正数的概率是
【答案】ABD
【解析】A,B选项:设乙的得分为,则的所有可能取值为0,10,25,40,
且,
,,,
因此,故A,B正确;
C,D选项:记“甲得分为正数”为事件,“乙得分为正数”为事件,
则,,
,,
因此甲得0分的概率是,
甲、乙的得分都是正数的概率是,
故C错误,D正确.
故选:ABD
16.(2022·天津红桥·天津三中校考二模)某地区教研部门开展高三教师座谈会,每名教师被抽到发言的概率均为p,且是否被抽到发言相互独立,已知某校共有8名教师参加座谈会,记X为该校教师中被抽到发言的人数,若,且,则_____.
【答案】
【解析】由题意,每名教师被抽到发言的概率均为p,且是否被抽到发言相互独立,
所以随机变量,
因为,可得,解得或,
又因为,可得,所以,
所以.
17.(2023·内蒙古赤峰·赤峰二中校联考模拟预测)的展开式中,含的项的系数为______.
【答案】
【解析】的展开式中,含的项有以下两类:
第一类:4个因式中有1个取到,其余3个都取到2,即
第二类:4个因式中有2个取到,其余2个都取到2,即
所以的展开式中含的项为,
故含的项的系数为.
18.(2023·黑龙江哈尔滨·哈九中校考二模)为调查某地区植被覆盖面积x(单位:公顷)和野生动物数量y的关系,某研究小组将该地区等面积划分为200个区块,从中随机抽取20个区块,得到样本数据,部分数据如下:
x | … | 2.7 | 3.6 | 3.2 | … |
y | … | 57.8 | 64.7 | 62.6 | … |
经计算得:,,,.
(1)利用最小二乘法估计建立y关于x的线性回归方程;
(2)该小组又利用这组数据建立了x关于y的线性回归方程,并把这两条拟合直线画在同一坐标系xOy下,横坐标x,纵坐标y的意义与植被覆盖面积x和野生动物数量y一致.
(i)求这两条直线的公共点坐标.
(ii)比较与的斜率大小,并证明.
附:y关于x的线性回归方程中.,,
【解析】(1)由题意可知,;
,,
故回归方程为;
(2)设,的斜率分别为,,
x关于y的线性回归方程为, ,
,,
(i)根据回归直线的求解过程可知两条直线都过,且,
故公共点只有一个 ;
(ii)∵,,,,∴ ,
若,则,即恒成立,代入表格一组数据得:
,矛盾,故.
19.(2023·四川成都·川大附中校考二模)2022年12月2日晚,神舟十四号、神舟十五号航天员乘组进行在轨交接仪式,两个乘组移交了中国空间站的钥匙,6名航天员分别在确认书上签字,中国空间站正式开启长期有人驻留模式.为调查大学生对中国航天事业的了解情况,某大学进行了一次抽样调查,若被调查的男女生人数均为,统计得到以下列联表,经计算,有97.5%的把握认为该校学生对中国航天事业的了解与性别有关,但没有99%的把握认为该校学生对中国航天事业的了解与性别有关.
| 男生 | 女生 | 合计 |
了解 |
|
| |
不了解 |
|
| |
合计 |
|
|
|
(1)求n的值;
(2)将频率视为概率,用样本估计总体,从全校男学生中随机抽取5人,记其中了解中国航天事业的人数为X,求X的分布列及数学期望.
附表:
0.10 | 0.05 | 0.025 | 0.01 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
【解析】(1)由已知,完成列联表,
| 男生 | 女生 | 合计 |
了解 | |||
不了解 | |||
合计 |
将数值代入公式可得的观测值:,
根据条件,可得,解得,
因为,所以.
(2)由(1)知,样本的男生中了解中国航天事业的频率为,
用样本估计总体,从全校男生中随机抽取一人,了解中国航天事业的概率为,则,
,,
,,
,.
则X的分布列为
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
.
20.(2023·陕西汉中·统考二模)“绿水青山就是金山银山”的理念越来越深入人心.据此,某网站调查了人们对生态文明建设的关注情况,调查数据表明,参与调查的人员中关注生态文明建设的约占80%.现从参与调查的关注生态文明建设的人员中随机选出200人,并将这200人按年龄(单位:岁)分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],得到的频率分布直方图如图所示.
(1)求这200人的平均年龄(每一组用该组区间的中点值作为代表);
(2)现在要从年龄在第1,2组的人员中用分层抽样的方法抽取 5 人,再从这5人中随机抽取3人进行问卷调查,求抽取的3人中至少1人的年龄在第1组中的概率;
(3)用频率估计概率,从所有参与生态文明建设关注调查的人员(假设人数很多,各人是否关注生态文明建设互不影响)中任意选出3人,设这3人中关注生态文明建设的人数为X,求随机变量X的分布列及期望.
【解析】(1)由小矩形面积和等于1可得:,解得.
平均年龄(岁).
(2)第1组总人数为200×0.01×10=20,第2组总人数为200×0.015×10=30
根据分层抽样可得:第1组抽取人,第2组抽取人
再从这5人中抽取3人,设至少1人的年龄在第1组中的事件为A,其概率为.
(3)由题意可知:,则有:
,,
,.
∴X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
可得的数学期望.
高考数学二轮强化练习08 函数与导数(2份打包,原卷版+教师版): 这是一份高考数学二轮强化练习08 函数与导数(2份打包,原卷版+教师版),文件包含高考数学二轮强化练习08函数与导数教师版doc、高考数学二轮强化练习08函数与导数原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
高考数学二轮强化练习06 解析几何(2份打包,原卷版+教师版): 这是一份高考数学二轮强化练习06 解析几何(2份打包,原卷版+教师版),文件包含高考数学二轮强化练习06解析几何教师版doc、高考数学二轮强化练习06解析几何原卷版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
高考数学二轮强化练习05 立体几何与空间向量(2份打包,原卷版+教师版): 这是一份高考数学二轮强化练习05 立体几何与空间向量(2份打包,原卷版+教师版),文件包含高考数学二轮强化练习05立体几何与空间向量教师版doc、高考数学二轮强化练习05立体几何与空间向量原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。