|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题07 几何中的最值问题(原卷版).docx
    • 解析
      专题07 几何中的最值问题(解析版).docx
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)01
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)02
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)03
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)01
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)02
    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)

    展开
    这是一份专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用),文件包含专题07几何中的最值问题解析版docx、专题07几何中的最值问题原卷版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。

    一、热点题型归纳
    【题型一】 将军饮马模型
    【题型二】 费马点模型
    【题型三】 隐圆模型
    【题型四】 胡不归模型
    【题型五】 阿氏圆模型
    【题型六】 瓜豆模型
    二、最新模考题组练
    【题型一】 将军饮马模型
    【典例分析】
    1.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?

    2.如图,在菱形ABCD中,AB=,∠A=120º,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 .

    【提分秘籍】
    【变式演练】
    1.如图,正方形ABCD的边长为4,点M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为( )
    A.4B.C.D.5
    2.如图,在等边中,于,.点分别为上的两个定点且,点为线段上一动点,连接,则的最小值为______.
    3.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小.
    【题型二】 费马点模型
    【典例分析】
    1.如图,在中,,P是内一点,求的最小值为______.
    【提分秘籍】
    【变式演练】
    1.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
    2.如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
    【题型三】 隐圆模型
    【典例分析】
    1.如图,长方形ABCD中,,BC=2,点E是DC边上的动点,现将△BEC沿直线BE折叠,使点C落在点F处,则点D到点F的最短距离为________.
    2.如图,Rt△ABC中,∠ACB=90°,∠CAB=60°,AB=4,点P是BC边上的动点,过点c作直线记的垂线,垂足为Q,当点P从点C运动到点B时,点Q的运动路径长为_______.
    3.如图,点,的坐标分别为,,为坐标平面内一动点,且,点为线段的中点,连接,当取最大值时,点的纵坐标为____.
    【提分秘籍】
    【变式演练】
    1.如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为( )
    A.B.C.D.
    2.如图,在矩形中,,,是矩形内部的一个动点,且,则线段的最小值为______.
    3.如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为_______.
    4.如图,点A,B的坐标分别为为坐标平面内一点,,M为线段的中点,连接,当取最大值时,点M的坐标为__________________.
    【题型四】 胡不归模型
    【典例分析】
    1.如图,在中,,,半径为的经过点,是圆的切线,且圆的直径在线段上,设点是线段上任意一点不含端点,则的最小值为______.
    【提分秘籍】
    【变式演练】
    1.如图,矩形ABCD中AB=3,BC,E为线段AB上一动点,连接CE,则AE+CE的最小值为___.
    2.如图,中,,,于点,是线段上的一个动点,则的最小值是__________.
    【题型五】 阿氏圆模型
    【典例分析】
    1.如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则AP+BP的最小值为( )
    A.7B.5C.D.
    2.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为 .
    【提分秘籍】
    【变式演练】
    1.如图,点A、B在上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在上.求2PC+PD的最小值.
    2.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为________.
    3.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+PC的最小值为 .
    【题型六】 瓜豆模型
    【典例分析】
    1.如图,长方形ABCD中,AB=6,BC=8,E为BC上一点,且BE=2,F为AB边上的一个动点,连接EF,将EF绕着点E顺时针旋转30°到EG的位置,连接FG和CG,则CG的最小值为 .
    2.如图,⊙O的直径AB=2,C为⊙O上动点,连结CB,将CB绕点C逆时针旋转90°得到CD,连结OD,则OD的最大值为 .
    【提分秘籍】
    【变式演练】
    1.如图,在△ABC中,∠ACB=90°,点D在BC边上,BC=5,CD=2,点E是边AC所在直线上的一动点,连接DE,将DE绕点D顺时针方向旋转60°得到DF,连接BF,则BF的最小值为 .
    2.如图,线段AB=2,点C为平面上一动点,且∠ACB=90°,将线段AC的中点P绕点A顺时针旋转90°得到线段AQ,连接BQ,则线段BQ的最大值为 .
    3.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为 .
    1.已知,D是线段上的动点且于点G,,则的最小值为( )
    A.B.C.D.
    2.如图,中,,,则边的最大值为( )
    A.B.C.8D.
    3.如图,在中,于D,于E,连接.若,则点C到的距离的最大值是( )
    A.3B.6C.D.
    4.如图,在正方形中,,以边为直径作半圆,是半圆上的动点,于点,于点,设,,则的最小值是( )
    A.B.C.D.
    5.如图,在矩形中,,,点E是矩形内部一动点,且,点P是边上一动点,连接、,则的最小值为( )
    A.8B.C.10D.
    6.如图,已知矩形,对角线与相交于点,,,是边上一动点,当取最小值时,的长为( )
    A.B.C.2D.
    7.四边形是边长为的正方形,点在边上,连接,为中点,连接,点在上且,连接,则的最小值为( )
    A.B.C.D.
    8.如图,在矩形中,,,P是上一个动点,过点P作,垂足为G,连接,取中点E,连接,则线段的最小值为( )
    A.B.C.3D.
    9.已知,中,,,,以为边作,使得,连接,则线段长的最大值为______.
    10.如图,在中,,,,线段绕点旋转到,连,为的中点,连接,则的最大值是________.
    11.如图,在矩形中,,,点是边的中点,将沿翻折得,点落在四边形内,点是线段上的动点,过点作,垂足为,连接,则的最小值为 ___________.
    12.如图,等腰的底边长为6,面积是30,腰的垂直平分线分别交,边于点E,F,若点D为边的中点,点M为线段上一动点,则周长的最小值为______.
    13.如图,在平面直角坐标系中,菱形的顶点,点P是对角线上的一个动点,已知,则的最小值是_________________
    14.如图,是等边三角形,,若的半径为2,圆心O在线段上运动,则点A到上的点的距离最小值为______.
    15.如图,在平面直角坐标系中,点,C、D是y轴上的两个动点,且,连接AD、BC,则的最小值为______.
    16.如图,在矩形中,,动点P在矩形的内部,连接、,若,则的最小值是___.
    17.如图,等边的边长为4,的半径为2,P为上动点,过点P作的切线,切点为Q,则的最小值为________________.

    18.如图,在平面直角坐标系中,已知点,C为平面内的动点,且满足,D为直线上的动点,则线段长的最小值为____________.
    两定一动模型
    一定两动模型
    (同侧)
    (异侧)
    两线段相减的最大值模型(三点共线)
    将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。
    即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE。
    定点定长
    定弦定角
    四点共圆
    最短距离:“一箭穿心”,然后点到圆心的距离-半径;
    最长距离:“一箭穿心”,然后点到圆心的距离+半径。
    求BC+kAC的最小值问题,构造射线AD使得sin∠DAN=k,即,CH=kAC.将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.
    问题:在圆上找一点P使得的值最小,解决步骤具体如下:
    ①如图,将系数不为1的线段两端点与圆心相连即OP,OB
    ②计算出这两条线段的长度比
    ③在OB上取一点C,使得,即构造△POM∽△BOP,则,
    ④则,当A、P、C三点共线时可得最小值。
    运动轨迹为直线

    模型总结:
    条件:主动点、从动点到定点的距离之比是定量;主动点、从动点与定点连线的夹角是定量;
    结论:① 主动点、从动点的运动轨迹是同样的图形;
    ② 主动点路径做在直线与从动点路径所在直线的夹角等于定角
    ③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;
    运动轨迹为圆
    条件:两个定量
    主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
    主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
    结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;
    (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.
    相关试卷

    专题12 二次函数与几何图形的综合问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用): 这是一份专题12 二次函数与几何图形的综合问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用),文件包含专题12二次函数与几何图形的综合问题解析版docx、专题12二次函数与几何图形的综合问题原卷版docx等2份试卷配套教学资源,其中试卷共133页, 欢迎下载使用。

    专题11 阅读理解型问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用): 这是一份专题11 阅读理解型问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用),文件包含专题11阅读理解型问题解析版docx、专题11阅读理解型问题原卷版docx等2份试卷配套教学资源,其中试卷共121页, 欢迎下载使用。

    专题10 选填压轴题题型归类-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用): 这是一份专题10 选填压轴题题型归类-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用),文件包含专题10选填压轴题题型归类解析版docx、专题10选填压轴题题型归类原卷版docx等2份试卷配套教学资源,其中试卷共122页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题07 几何中的最值问题-2023年中考数学毕业班二轮热点题型归纳与变式演练(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map