河北省保定市曲阳县2021-2022学年八年级下学期期末质量检测数学试卷(含解析)
展开2021-2022学年度第二学期期中质量检测
八年级数学试卷
一、选择题(每小题3分,共30分)
1. 在圆的面积公式中,其中变量是( )
A. S B. C. r D. S和r
【答案】D
解析:在圆的面积公式S=πr2中,π是常量,S、r是变量,
故选:D.
2. 在平面直角坐标系中,点所在的象限是
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
【答案】C
解析:解:,点的横坐标-2<0,纵坐标-3<0,
∴这个点在第三象限.
故选C.
3. 下列调查中,调查方式选择合理的是( )
A. 调查你所在班级同学的身高,采用抽样调查的方式
B. 调查市场上某品牌电脑的使用寿命,采用普查的方式
C. 对端午节期间市面上粽子质量情况的调查,采用抽样调查的方式
D. 要了解全国初中生的业余爱好,采用普查的方式
【答案】C
解析:解:A、调查你所在班级同学的身高,应采用全面调查方式,选项不合理,不符合题意;
B、调查市场上某品牌电脑的使用寿命,应采用抽样调查的方式,选项不合理,不符合题意;
C、对端午节期间市面上粽子质量情况的调查,应采用抽样调查的方式,选项合理,符合题意;
D、要了解全国初中学生的业余爱好,应采用抽样调查的方式,选项不合理,不符合题意;
故选C.
4. 函数的自变量的取值范围是( )
A. x>0且x≠ B. x≥0且x≠ C. x≥0 D. x≠
【答案】B
解析:由题意得:,
解得:x≥0且x≠,
故选B.
5. 如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是( )
A. A B. B C. C D. D
【答案】C
解析:∵P在第五列第二行,用(5,2)表示,
∴有序数对(4,3)表示点应在第四列第三行.
故选:C.
6. 2021年2月1日,教育部印发的关于加强中小学生手机管理工作的通知指出,中小学生原则上不得将个人手机带入校园,禁止带入课堂某校针对这个通知随机调查了若干名家长对带手机进校园的态度并制成了统计图如图,赞成学生带手机进校园的家长有22人,则反对学生带手机进校园的家长有( )
A. 140人 B. 120人 C. 220人 D. 100人
【答案】B
解析:解:调查的家长总人数是,
反对学生带手机进校园的家长有人.
故选:.
7. 长方形周长为30,设长为x,宽为y,则y与x的函数关系式为( )
A. y=30﹣x B. y=30﹣2x C. y=15﹣x D. y=15+2x
【答案】C
解析:∵矩形的周长是30cm,
∴矩形的一组邻边的和为15cm,
∵一边长为xcm,另一边长为ycm.
∴y=15﹣x,
故选C.
8. 过点C(-1,-1)和点D(-1,5)作直线,则直线CD ( )
A. 平行于y轴 B. 平行于x轴
C. 与y轴相交 D. 无法确定
【答案】A
解析:解:点C(-1,-1)和点D(-1,5)横坐标均为-1,轴,
故选A.
9. 杨老师将某次数学测试的成绩整理后绘制成如图所示的频数分布直方图,下列说法正确的是( )
A. 得分在60~70分的人数最多 B. 人数最少的分数段的频数为4
C. 得分及格(≥60分)有12人 D. 该图数据分组的组距为10
【答案】D
解析:解:A.由频数分布直方图可知,70~80分的人数最多,是14人,因此选项A不正确;
B.90~100分的人数最少,是2人,因此选项B不正确;
C.得分及格的有12+14+6+2=34人,因此选项C不正确;
D.该图数据分组的组距为60﹣50=10,因此选项D正确;
故选:D.
10. 将一盛有部分水圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度与注水时间的函数图象大致为( )
A. B.
C. D.
【答案】B
解析:解:圆柱形小水杯事先盛有部分水,起点处小水杯内水面的高度必然是大于0的,用排除法可以排除掉A、D;
注水管沿大容器内壁匀速注水,在大容器内水面高度到达h之前,小水杯中水面高度保持不变,大容器内水面高度到达h后,水匀速从大容器流入小容器,小容器水面高度匀速上升,达到最大高度h后,小容器内盛满了,水面高度一直保持h不变,因此可以排除C,
正确答案选B.
二、填空题(每小题3分,共30分)
11. 某小区一天收集各类垃圾共2.4吨,绘制成各类垃圾收集量的扇形图,其中湿垃圾在扇形图中对应的圆心角为135°,那么该小区这一天湿垃圾共收集了_____吨.
【答案】0.9
解析:解:2.4×=0.9(吨),
故答案为:0.9..
12. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.
【答案】(5,2)
解析:解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,
∴△ABO≌△A′B′O′,∠AOA′=90°,
∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,
∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,
∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,
∴∠AOC=∠A′OC′.
在△ACO和△A′C′O中,
∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,
∴△ACO≌△A′C′O(AAS),
∴AC=A′C′,CO=C′O.
∵A(﹣2,5),
∴AC=2,CO=5,
∴A′C′=2,OC′=5,
∴A′(5,2).故答案(5,2).
考点:坐标与图形变化-旋转.
13. 根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.
【答案】##
解析:解:∵x=,
∴1<x<2,
∴y=-x+2=-+2=,
即输出的y值为,
故答案为:.
14. 已知10个数据:0、1、1、2、2、2、3、3、3、8,其中3出现的频数是_______.
【答案】3.
解析:解:10个数据:0、1、1、2、2、2、3、3、3、8,其中3出现了3次,故3出现的频数是3.
故答案为3.
15. 如图,点B相对于点A的方向是____________.
【答案】北偏西
解析:解:如图,由题意可知,
所以点B相对于点A的方向是北偏西,
故答案为:北偏西.
16. 如图,OA,BA分别表示甲、乙两名学生运动时路程s与时间t的关系.根据图象,判断快者的速度比慢者的速度每秒快_______m.
【答案】1.5
解析:解:64÷8-(64-12)÷8
=8-52÷8
=8-6.5
=1.5(m).
答:快者的速度比慢者的速度每秒快1.5m.
故答案为:1.5.
17. 若点A(2,n)在x轴上,则点B(n﹣1,n+1)在_____象限.
【答案】第二
解析:由点x轴上得:
则点的坐标为
点在第二象限
即点在第二象限
故答案为:第二.
18. 已知样本数据个数为30,且被分成4组,各组数据个数之比为2∶3∶4∶1,则第二小组的频数和第三小组的频率分别为____________________.
【答案】9,0.4
解析:解:由题意得,
第二小组的频数为:
第三小组的频数为:
第三小组的频率
故答案为:9,0.4.
19. 某超市苹果标价为3元/千克,设购买这种苹果x千克,付费y元,写出y与x之间的函数关系式,并指出自变量的取值范围__________.
【答案】
解析:解:∵y与x成正比,
∴,
故答案为:.
20. 如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
【答案】D
解析:解:由题意当0≤x≤4时,
y=×AD×AB=×3×4=6,
当4<x<7时,
y=×PD×AD=×(7﹣x)×4=14﹣2x.
故选:D.
三、解答题(40分.解答应写出文字说明、证明过程或演算步骤)
21. 我市6月16日至6月22日的气温情况如下:
日期 | 16日 | 17日 | 18日 | 19日 | 20日 | 21日 | 22日 |
最高气温 | |||||||
最低气温 |
(1)用一个折线统计图描述这两组数据.
(2)在这七天中,温差最大的是哪一天?最大温差是多少?
【答案】(1)作图见解析;(2)温差最大的是22日,最大温差是.
解析:(1)如图:
(2)16日的温差为:29−23=6(℃),
17日的温差为:27−24=3(℃),
18日的温差为:28−22=6(℃),
19日的温差为:27−21=6(℃),
20日的温差为:29−20=9(℃),
21日的温差为:29−20=9(℃),
22日的温差为:30−20=10(℃),
∴温差最大的是22日,最大温差是10°C.
22. 在直角坐标系中,画出函数的图象(取值、描点、连线、画图)
【答案】见解析
解析:解:列表:
描点:如图,描出点:,,,,,
连线:如图所示,
∴图中抛物线为函数的图象.
23. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了 位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
【答案】(1)30;(2)①补图见解析;②120;③70人.
解析:解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10;D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
24. 已知函数,计算和时,哪一个对应的函数值较大?
【答案】当x=-2时对应的函数值较大
解析:解:∵当x=-2时,y=14;
当x=-1时,y=7;
∴当x=-2时对应的函数值较大
25. 下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.
(1)“小猪”所占的面积为多少?
(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);
(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).
【答案】(1)32.5(2)作图见解析(3)-4;1
解析:分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;
(2)根据直线DE在网格中作出小猪的轴对称图形即可;
(3)按要求建立平面直角坐标系即可得出A点坐标.
详解:(1)4×4×+8×3×+1×1×=32.5;
(2)画图如下,
(3)(-4,1).
26. 一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?
(4)请问这个水果贩子一共赚了多少钱?
【答案】(1)农民自带的零钱为50元;(2)降价前他每千克西瓜出售的价格是3.5元;(3)他一共批发了120千克的西瓜;(4)这个水果贩子一共赚了184元钱.
解析:解:(1)由图可得农民自带的零钱为50元,
答:农民自带的零钱为50元;
(2)(330﹣50)÷80
=280÷80
=3.5元,
答:降价前他每千克西瓜出售的价格是3.5元;
(3)(450﹣330)÷(3.5﹣0.5)=120÷3=40(千克),
80+40=120千克,
答:他一共批发了120千克的西瓜;
(4)450﹣120×1.8﹣50=184元,
答:这个水果贩子一共赚了184元钱.
2023-2024学年河北省保定市曲阳县九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河北省保定市曲阳县九年级(上)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
河北省保定市唐县2022-2023学年八年级下学期期末学业质量检测数学试卷(含解析): 这是一份河北省保定市唐县2022-2023学年八年级下学期期末学业质量检测数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省保定市曲阳县2022-2023学年七年级上学期期中质量检测数学试卷(含答案): 这是一份河北省保定市曲阳县2022-2023学年七年级上学期期中质量检测数学试卷(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。