2023年高考押题预测卷02【全国甲卷理科】(考试版)A4
展开绝密★启用前
2023年高考押题预测卷02【全国甲卷】
数 学(理科)
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则
A. B. C.,或 D.,或
2.在复平面内,已知复数对应的向量为,现将向量绕点逆时针旋转90°,并将其长度变为原来的2倍得到向量,设对应的复数为,则( )
A. B. C. 2 D.
3.转子发动机采用三角转子旋转运动来控制压缩和排放.如图,三角转子的外形是有三条侧棱的曲面棱柱,且侧棱垂直于底面,底面是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆构成的曲面三角形,正三角形的顶点称为曲面三角形的顶点,侧棱长为曲面棱柱的高,记该曲面棱柱的底面积为,高为,已知曲面棱柱的体积,若,,则曲面棱柱的体积为
A. B. C. D.
4.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是
A.2019年12月份,全国居民消费价格环比持平
B.2018年12月至2019年12月全国居民消费价格环比均上涨
C.2018年12月至2019年12月全国居民消费价格同比均上涨
D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格
5.已知直线和平面所成的角为,则直线和平面内任意直线所成的角的取值范围为
A. B. C. D.
6.在如图所示的程序框图中,若输入的a,b,c分别为,,,执行该程序框图,输出的结果用原来数据表示为( )
A. b,a,c B. a,b,c
C. c,b,a D. c,a,b
7.中同传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.已知其图象能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数”,则下列函数中一定不是圆的“优美函数”的为
A. B.
C. D.
8.下如图是世界最高桥——贵州北盘江斜拉桥.下如图是根据下如图作的简易侧视图(为便于计算,侧视图与实物有区别).在侧视图中,斜拉杆PA,PB,PC,PD的一端P在垂直于水平面的塔柱上,另一端A,B,C,D与塔柱上的点O都在桥面同一侧的水平直线上.已知,,,.根据物理学知识得,则( )
A. 28m B. 20m C. 31m D. 22m
9.某舞台灯光设备有一种25头矩阵灯(如图所示),其中有2头灯出现故障,假设每头灯出现故障都是等可能的,则这2头故障灯相邻(横向相邻或纵向相邻)的概率为
A. B.
C. D.
10.在四棱锥中,底面为梯形,平面底面,,,,,则四棱锥外接球的表面积为
A. B. C. D.
11.设双曲线的右焦点为,,若直线与的右支交于,两点,且为的重心,则直线斜率的取值范围为
A. B.
C. D.
12.若存在,使得关于的不等式成立,则实数的最小值为( )
A. 2 B. C. D.
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分.
13.在平面直角坐标系中,角是以为顶点,轴为始边,若角的终边过点,求 .
14.已知,则 .
15.规定:设函数,若函数在上单调递增,则实数的取值范围是______.
16.已知椭圆C:的左、右焦点分别为,,过焦点的直线l与椭圆C相交于两点,椭圆C在两点处的切线交于点P,则点P的横坐标为______,若的垂心为点H,则的最小值是______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)已知公差为正数的等差数列中,,,构成等比数列,是其前项和,满足.
(1)求数列的通项公式及前项和; (2)若_________,求数列的前项和.
在①,②,③这三个条件中任选一个补充在第(2)问中,并求解.
注:如果选择多个条件分别解答,按第一个解答计分.
- (12分) 2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G信号覆盖的可能性,在持续高风速下5G信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G、中国5G的底气来自哪里.现在,5G的到来给人们的生活带来更加颠覆性的变革,某IT公司基于领先技术的支持,5G经济收入在短期内逐月攀升,该IT公司在1月份至6月份的5G经济收入y(单位:百万元)关于月份x的数据如下表所示,并根据数据绘制了如图所示的散点图.
月份x | 1 | 2 | 3 | 4 | 5 | 6 |
收入y(百万元) | 6.6 | 8.6 | 16.1 | 21.6 | 33.0 | 41.0 |
(1)根据散点图判断,与(a,b,c,d均为常数)哪一个更适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的结果及表中的数据,求出y关于x的回归方程,并预测该公司7月份的5G经济收入.(结果保留小数点后两位)
(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X,求X的分布列和数学期望.参考数据:
3.50 | 21.15 | 2.85 | 17.70 | 125.35 | 6.73 | 4.57 | 14.30 |
其中,设(i=1,2,3,4,5,6).
参考公式:对于一组具有线性相关关系的数据(,)(i=1,2,3,…,n),其回归直线的斜率和截距的最小二乘估计公式分别为,.
19.(12分)如图1,在直角梯形ABCD中,,,,E为AC的中点,将沿折起(如图2).在图2所示的几何体D-ABC中:
(1)若AD⊥BC,求证:DE⊥平面ABC;
(2)若BD与平面ACD所成的角为60°,求二面角D-AC-B的余弦值.
20.(12分) 已知抛物线,为坐标原点,焦点在直线上.
(1)求抛物线的标准方程;
(2)过点作动直线与抛物线交于,两点,直线,分别与圆交于点,两点(异于点),设直线,斜率分别为,.
①求证:为定值; ②求证:直线恒过定点.
- (12)已知函数.
(1)当时,求函数在区间上的值域;
(2)若函数有三个零点,求实数的取值范围,并求的值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系中,曲线C的参数方程为(为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)P为l上一点,过P作曲线C的两条切线,切点分别为A,B,若,求点P横坐标的取值范围.
23.[选修4-5:不等式选讲](10分)
已知函数.
(1)求不等式的解集;
(2)若且满足,记是的最大值,证明:.
2023年高考押题预测卷03(甲卷理科)(考试版)A4: 这是一份2023年高考押题预测卷03(甲卷理科)(考试版)A4,共7页。
2023年高考押题预测卷03(甲卷理科)(考试版)A3: 这是一份2023年高考押题预测卷03(甲卷理科)(考试版)A3,共4页。
2023年高考押题预测卷02【全国甲卷理科】(参考答案)A4: 这是一份2023年高考押题预测卷02【全国甲卷理科】(参考答案)A4,共14页。