2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(三)(含答案)
展开
这是一份2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(三)(含答案),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(三)一、单选题(每题3分,共30分)1.下列说法中,正确的是( ) A.不带根号的数不是无理数 B. 的立方根是±2C.绝对值等于 的实数是 D.每个实数都对应数轴上一个点2.下列手机手势解锁图案中,是中心对称图形的是 A. B.C. D.3.一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是一个半径为2的圆,那么这个几何体的全面积是 ( )A.8πcm2 B.10πcm2 C.12πcm2 D.16πcm24.对某村一到六年级适龄儿童人数进行了统计,得到每个年级的儿童人数分别10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.如图是由多个相同小立方体搭成的几何体的三视图,则这个几何体是( ) A. B. C. D.6.某种颗粒每粒的质量为0.000000037克,500粒此种颗粒的质量用科学记数法可以表示为克,则的值是( )A.-5 B.-6 C.-7 D.-87.如图,菱形ABCD的边AD⊥EF,垂足为点E,点H是菱形ABCD的对称中心.若FC= ,EF= DE,则菱形ABCD的边长为( ) A. B.3 C.4 D.58.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为( ) A.1 B.2 C.3 D.4.89.已知二次函数y=x2-x+,当自变量x取m时,对应的函数值小于0,当自变量x取m-1、m+1时,对应的函数值为y1、y2,则y1、y2满足( )A.y1>0,y2>0 B.y1<0,y2>0C.y1<0,y2<0 D.y1>0,y2<010.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于 DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( ) A.( ﹣1,2) B.( ,2)C.(3﹣ ,2) D.( ﹣2,2)二、填空题(每空4分,共24分)11.若Z=,分解因式:x3y2﹣ax= .12.我国“辽宁号”航空母舰的满载排水量为67500吨,将数据67500精确到千位的近似值为 .(结果用科学记数法表示)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,则该盒子中装有黄色兵乓球的个数是 .14.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是 的中点,弦CF交AB于点E.若⊙O的半径为2,则CF= . 15.如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为 .16.如图,已知顶点为 的抛物线 经过点 ,下列结论:① ;② ;③若点 在抛物线上,则 ;④关于 的一元二次方程 的两根为 和 ,其中正确的是 . 三、解答题(共7题,共66分)17.先化简,再求值:( )÷ ,其中x=2sin45°.18.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为 ,图①中m的值为 ; (2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数; (3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数. 19.拉杆旅行箱为人们的出行带来了极大的方便,右图是一种拉杆旅行箱的侧面示意图,箱体ABCD可视为矩形,其中AB为50cm,BC为30cm,点A到地面的距离AE为4cm,旅行箱与水平面AF成60°角,求箱体的最高点C到地面的距离.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为.( 1 )请在如图所示的网格内作出x轴、y轴;( 2 )请作出∆ABC关于y轴对称的∆,并写出点的坐标;( 3 )求出∆的面积.21.如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.22.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.23.已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
答案解析部分1.【答案】D2.【答案】B3.【答案】C4.【答案】C5.【答案】B6.【答案】A7.【答案】A8.【答案】D9.【答案】A10.【答案】A11.【答案】x(xy+2)(xy﹣2)12.【答案】6.8×10413.【答案】614.【答案】15.【答案】36°16.【答案】①②④17.【答案】解:原式=[ ﹣ ]• = • = ,当x=2sin45°=2× = 时,原式= =2 .18.【答案】(1)40;25(2)平均数是: =1.5, 众数是1.5,中位数是1.5;(3)800× =720(人), 答:该校每天在校体育活动时间大于1h的学生有720人.19.【答案】解:如图,过点B、A分别作地面的平行线a、b.过C作CM⊥a于点M,过点B作BN⊥b于点N. 在直角△ABN中,AB=50cm,∠BAN=60°,则BN=AB•sin60°=25 cm.在直角△BCM中,易求∠CBM=30°,则CM= BC=15cm.所以,点C到地面的高度是:CM+BN+AE=15+25 +4=19+25 (cm).答:箱体的最高点C到地面的距离是(19+25 )cm.20.【答案】解:⑴点C向右平移一个格为y轴,点C向下平移3个格为x轴,两轴交点为原点O,建立如图平面直角坐标系,点B坐标为(-2,1);⑵∆ABC关于y轴对称的∆,关于y轴对称点的坐标特征是横坐标互为相反数,纵坐标不变,∵点,∴它们的对称点,在平面直角坐标系中,描点,然后顺次连结,则∆ABC关于y轴对称的三角形是∆ ,点;⑶过C1、A1作平行y轴的直线,与过第A1、B1作平行x轴的平行线交于E,A1,F,G,∴,=,=12-3-1-4,=4.21.【答案】(1)证明:连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
又∵BH⊥EF,
∴OD∥BH,
∴∠ODB=∠DBH
∵OD=OB
∴∠ODB=∠OBD,
∴∠OBD=∠DBH,
∴BD平分∠ABH.
(2)解:过点O作OG⊥BC于点G,则BG=CG=4,
在Rt△OBG中,OG===2.22.【答案】证明:(1)如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°23.【答案】(1)证明:①作PM⊥DG于M,如图1,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC;②∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中∴△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,∵DF=PD,∴四边形PEFD为菱形;(2)解:四边形PEFD是菱形.理由如下:作PM⊥DG于M,如图2,与(1)一样同理可证得△ADF≌△MPG,∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,∵DF=PD,∴四边形PEFD为菱形.