2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(四)(含答案)
展开
2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(四)
一、单选题(每题3分,共30分)
1.有理数,5,0,,,中,负数的个数为( )
A.1 B.2 C.3 D.4
2.“水是生命之源,滋润着世间万物"国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移左侧的节水标志得到的图形是( )
A. B.
C. D.
3.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.2πcm B.1.5cm C.πcm D.1cm
4.下列说法正确的是 ( )
A.要了解一批灯泡的使用寿命,采用全面调查的方式
B.要了解全市居民对环境的保护意识,采用抽样调查的方式
C.一个游戏的中奖率是1%,则做100次这这样的游戏一定会中奖
D.若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定
5.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是( )
A. B. C. D.
6.北斗卫星导航系统是中国自行研制的全球卫星导航系统,授时精度优于0.00000001秒,0.00000001用科学记数法可表示为( )
A.0.1×10﹣7 B.1×10﹣8 C.1×10﹣7 D.0.1×10﹣8
7.在矩形纸片 中, , ,现将纸片折叠压平,使 与 重合,如果设折痕为 ,那么重叠部分 的面积等于( )
A.1 B.1.5 C.2 D.2.5
8.如图,线段AB= 、CD= ,那么,线段EF的长度为( )
A. B. C. D.
9.已知抛物线 的部分图象如图所示,则当y>0时,x的取值范围是( )
A.x<3 B.x>-1 C.-1<x<3 D.x<-1或x>3
10.如图,半径为A的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F,当点E从点B出发逆时针运动到点C时,点F经过的路径长是( )
A. B. C. D.2 π
二、填空题(每空4分,共24分)
11.当x 时,式子 的值不小于 的值
12.若M=a2﹣ac+1,N=ac﹣c2,则M与N的大小关系是M N.
13.在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是 .
14.如图,圆 过正方形 的顶点 、 ,且与边 相切,若正方形的边长为 ,则圆 的半径为 .
15.如图,在 中, ,点M,N分别是AB,AC上的动点,沿MN所在的直线折叠,使点A的对应点 始终落在BC上, 若为直角三角形,则BM的长为 ;
16.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴交于负半轴,给出六个结论:①a>0;②b>0;③c>0;④a+b+c=0;⑤b2﹣4ac>0;⑥2a﹣b>0,其中正确结论的序号是
三、解答题(共7题,共66分)
17.计算: .
18.某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:
(1)这四个班共植树多少棵?
(2)请你在答题卡上不全两幅统计图;
(3)求图1中“甲”班级所对应的扇形圆心角的度数;
(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?
19.如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)(参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)
20.如图,图中的小方格都是边长为1的正方形,
①直接写出△ABC的各顶点坐标:
A( , ),B ( , ) ,C ( , ) ;
②画出△ABC关于y轴的对称图形△A1B1C1;
③直接写出△ABC关于x轴对称的△A2B2C2的顶点A2 ( , ) B2 ( , ) (其中A2与A对应,B2与B对应,不必画图.)
21.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?为什么?
(2)若AC=2,AO=,求OD的长度.
22.如图,已知△ABC中,AB=AC,D为△ABC所在平面内的一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB于点E、F.
(1)如图1,当点D在线段BC上时,通过观察分析线段DE、DF、AB之间的数量关系,并说明理由;
(2)如图2,当点D在直线BC上,其它条件不变时,试猜想线段DE、DF、AB之间的数量关系(请直接写出等式,不需证明);
(3)如图3,当点D是△ABC内一点,过D作DE∥AB,DF∥AC分别交直线AC、直线AB和直线BC于E、F和G.试猜想线段DE、DF、DG与AB之间的数量关系(请直接写出等式,不需证明).
23.如图1,正方形ABCD的边长为4,点E,F分别在BC,BD上,且BE=1,过三点C,E,F作⊙O交CD于点G。
(1)证明∠EFG=90°.
(2)如图2,连结AF,当点F运动至点A,F,G三点共线时,求△ADF的面积。
(3)在点F整个运动过程中,
①当EF,FG,CG中满足某两条线段相等,求所有满足条件的BF的长。
②连接EG,若 时,求⊙O的半径(请直接写出答案)。
答案解析部分
1.【答案】C
2.【答案】C
3.【答案】D
4.【答案】B
5.【答案】A
6.【答案】B
7.【答案】D
8.【答案】C
9.【答案】C
10.【答案】C
11.【答案】x≤3
12.【答案】>
13.【答案】35
14.【答案】
15.【答案】 或
16.【答案】①④⑤⑥
17.【答案】解:原式=
=
.
18.【答案】解:(1)四个班共植树的棵数是:
40÷20%=200(棵);
(2)丁所占的百分比是:×100%=35%,
丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
则丙植树的棵数是:200×15%=30(棵);
如图:
(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;
(4)根据题意得:2000×95%=1900(棵).
答:全校种植的树中成活的树有1900棵.
故答案为:200.
19.【答案】解:∵AH⊥直线l, ∴∠AHD=90°, 在Rt△ADH中,tan∠ADH= , ∴DH= , 在Rt△BDH中,tan∠BDH= , ∴DH= ∴ , 解得:AB≈5.3m, 答:该古塔塔刹AB的高为5.3m.
20.【答案】解:①△ABC的各顶点坐标:A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1);
故答案为:﹣3、2;﹣4、﹣3;﹣1、﹣1;
②如图,△A1B1C1即为所求,
③如图,△A2B2C2即为所求,A2坐标为(﹣3,﹣2)、B2坐标为(﹣4,3).
故答案为:﹣3、﹣2;﹣4、3.
21.【答案】解:(1)AC=CD,理由为:
∵OA=OB,
∴∠OAB=∠B,
∵直线AC为圆O的切线,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
则AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,
根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,
解得:OD=1.
22.【答案】解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DE=AF.
∵DF∥AC,∴∠FDB=∠C,
∵AB=AC,∴∠C=∠B,
∴∠FDB=∠B,
∴DF=FB,
∴DE+DF=AF+FB=AB;
(2)当点D在直线BC上时,分三种情况:
①当点D在CB延长线上时,如图2①,AB=DE﹣DF;
②当点D在线段BC上时,如图1,AB=DE+DF;
③当点D在BC的延长线上时,如图2②,AB=DF﹣DE;
(3)如图3,AB=DE+DG+DF.
23.【答案】(1)证明:连结 EG,
在正方形 ABCD 中,得∠C=90°
∴EG 为⊙O 的直径
∴∠EFG=90°
(2)解:如图,过F点作FN⊥AD,交BC于点M,
∵四边形ABCD为正方形,
∴∠ADF=45°,MN=AD,
∴ND=NF,
∴AN=FM,
∵∠MFG=∠AFN,∠MFG+∠MFE=∠AFN+∠FAN,
∴∠MFE=∠FAN,
∴△AFN≌△FEM(AAS),
∴FN=AM,EM=FN,
设AN=x, 则ND=EM=BM-BE=x-1,
∵AN+ND=4,
∴x+x-1=4,
∴x=,
∴FN=EM=BM-BE=-1=,
∴S△AFD=AD×FN=×4×=3.
(3)①1)如图,当EF=FG时,过F作FH⊥BC,FI⊥CD,
∵∠EFH+∠HFG=∠IFG+∠HFG,
∴∠EFH=∠IFG,
∴△EHF≌△GIF(AAS),
∴FH=FI,
又∵FH=BH,
∴BH=FI=HC=2,
∴BF=BH=2.
2)当CG=EF时,
∵EF=CG,
∴FG∥EC,
∵∠C=90°,
∴∠EFG=90°,∠FEC=90°,
∴四边形FECG为矩形,
又∵EF=BE,
∴BF=BE=.
3)当FG=CG,如图,过F点作FN⊥BC,
∵FG=CG,
∴∠FEG=CEG,
∵∠C=∠EFG=90°,
∴∠FGE=∠CGE,
∴EF=EC=BC-BE=4-1=3,
设EN=x,
则FN=BN=x+1,
∵EF2=FN2+EN2,
∴32=(x+1)2+x2,
解得x=,
则BN=,
BF=EN=.
②如图,作FH⊥EC,FK⊥CD,
△FKG∽△FHE,
∴,
设FH=k, 则FK=2k,
∴BH=FH=k,
∴BC=BH+HC=BH+FK=k+2k=4,
∴k=,
∴CG=CK-KG=k-2(k-1)=2-k=2-=,
∴∴EG=,
∴r=.
2021年吉林省中考初中毕业生学业水平考试数学模拟试题: 这是一份2021年吉林省中考初中毕业生学业水平考试数学模拟试题,共8页。
2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(一)(含答案): 这是一份2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(一)(含答案),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(三)(含答案): 这是一份2023年浙江省杭州市初中毕业生学业水平测试数学模拟试题(三)(含答案),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。