初中数学浙教版八年级上册2.7 探索勾股定理一等奖课件ppt
展开掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.
能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.
问题1 勾股定理的内容是什么?
如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.
问题2 求以线段a、b为直角边的直角三角形的斜边c的长:
① a=3,b=4;② a=5,b=12;③ a=7,b=24.
思考 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?
同学们你们知道古埃及人用什么方法得到直角的吗?
打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?
相传,我国古代的大禹在治水时也用了类似的方法确定直角.
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题1 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
下面有三组数分别是一个三角形的三边长a, b, c: ①5,12,13; ②7,24,25; ③8,15,17.问题2 这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,② 7,24,25满足72+242=252,③ 8,15,17满足82+152=172.
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
我觉得这个猜想不准确,因为测量结果可能有误差.
我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.
问题4 据此你有什么猜想呢?
由上面几个例子,我们猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2. 求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,
∴△ABC≌ △A′B′C′(SSS),
∴∠C= ∠C′=90° , 即△ABC是直角三角形.
如果三角形的三边长a 、b 、c满足a2+b2=c2那么这个三角形是直角三角形.
勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对应的角为直角.
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定理的逆定理,∴这个三角形不是直角三角形.
【点睛】根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.
若△ABC的三边a,b,c满足 a:b: c=3:4:5,是判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),∵(3k)2+(4k)2=25k2,(5k)2=25k2,∴(3k)2+(4k)2=(5k)2,∴△ABC是直角三角形,且∠C是直角.
【点睛】已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.
(1)若△ABC的三边a,b,c,且a+b=4,ab=1,c= ,试说明△ABC是直角三角形.
解:∵a+b=4,ab=1,∴a2+b2=(a+b)2-2ab=16-2=14.又∵c2=14,∴a2+b2=c2,∴△ABC是直角三角形.
(2) 若△ABC的三边 a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断△ABC的形状.
解:∵ a2+b2+c2+50=6a+8b+10c, ∴ a2-6a+9+b2-8b+16+c2-10c+25=0. 即 (a-3)²+ (b-4)²+ (c-5)²=0. ∴ a=3, b=4, c=5, 即 a2+b2=c2. ∴△ABC是直角三角形.
例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE= CB,试判断AF与EF的位置关系,并说明理由.
解:AF⊥EF.理由如下:设正方形的边长为4a, 则EC=a,BE=3a,CF=DF=2a.在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2.在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.
1.下列各组线段中,能构成直角三角形的是( )A.2,3,4 B.3,4,6 C.5,12,13 D.4,6,7
2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是 ( )A.4 B.3 C.2.5 D.2.4
3.若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是_______________________.
等腰三角形或直角三角形
如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.
3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
下列各组数是勾股数的是 ( ) A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132
【点睛】根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.
1.下列各组数是勾股数的是 ( ) A.3,4,7 B.5,12,13 C.1.5,2,2.5 D.1,3,5
将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( )A.是直角三角形 B.可能是锐角三角形C.可能是钝角三角形 D.不可能是直角三角形
3.已知a、b、c是△ABC三边的长,且满足关系式 ,则△ABC的形状是 ________________.
4.已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于1的正整数).试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由
解:∵AB²+BC²=(n²-1)²+(2n)² =n4 -2n²+1+4n² =n4 +2n²+1 =(n²+1)² =AC²,∴△ABC直角三角形,边AC所对的角是直角.
苏科版3.2 勾股定理的逆定理优质ppt课件: 这是一份苏科版3.2 勾股定理的逆定理优质ppt课件,共39页。PPT课件主要包含了解法提醒,特别提醒,勾股定理的逆定理,2练习,解都是勾股数,解是直角三角形等内容,欢迎下载使用。
初中浙教版2.7 探索勾股定理获奖课件ppt: 这是一份初中浙教版2.7 探索勾股定理获奖课件ppt,文件包含浙教版数学八上272勾股定理的逆定理课件pptx、浙教版数学八上27探索勾股定理练习docx、浙教版数学八上272勾股定理的逆定理教案doc等3份课件配套教学资源,其中PPT共13页, 欢迎下载使用。
初中数学浙教版八年级上册第2章 特殊三角形2.7 探索勾股定理获奖ppt课件: 这是一份初中数学浙教版八年级上册第2章 特殊三角形2.7 探索勾股定理获奖ppt课件,共27页。PPT课件主要包含了学习目标,勾股定理,勾股定理的逆定理,复习回顾,填一填,情景导入,典例解析,×1524,×1518,勾股定理逆定理等内容,欢迎下载使用。