真题重组卷05——2023年高考数学真题汇编重组卷(上海专用)
展开绝密☆启用前
冲刺2023年高考数学真题重组卷05
数学(上海地区专用)
考生注意:
1、本试卷共4页,21道试题,满分150分,考试时间120分钟.
2、本试卷分设试卷和答题卡.试卷包括试题与答题要求,作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.
一、填空题(本大题共有12题,满分54分,第1—6题每题4分,第7—12题每题5分)考生应在答题纸的相应位置直接填写结果.
1、(2015·上海·统考高考真题)函数的最小正周期为___________.
【答案】
【分析】先由二倍角公式将化简,再由,即可得出结果.
【详解】因为 ,所以,所以函数的最小正周期为.
故答案为
【点睛】本题主要考查函数的周期,二倍角的余弦公式.
2、(2019年上海高考真题)计算 .
解:.
故答案为:2.
3、(2022年上海高考真题)已知a∈R,行列式的值与行列式的值相等,则a= .
【分析】根据行列式所表示的值求解即可.
【解答】解:因为=2a﹣3,=a,
所以2a﹣3=a,解得a=3.
故答案为:3.
【点评】本题考查了行列式表示的值,属于基础题.
4、(2018•上海)在(1+x)7的二项展开式中,x2项的系数为 21 (结果用数值表示).
【考点】DA:二项式定理.版权所有
【专题】38 :对应思想;4O:定义法;5P :二项式定理.
【分析】利用二项式展开式的通项公式求得展开式中x2的系数.
【解答】解:二项式(1+x)7展开式的通项公式为
Tr+1=•xr,
令r=2,得展开式中x2的系数为=21.
故答案为:21.
【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.
5、(2017·上海·统考高考真题)已知四个函数:① ;② ;③ ;④ . 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为________
【答案】
【详解】 由四个函数①;②;③;④,
从中任选个函数,共有种,
其中“所选个函数的图像有且仅有一个公共点”共有①③、①④,共有种,
所以“所选个函数的图像有且仅有一个公共点”的概率为.
6、(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .
【考点】A8:复数的模.版权所有
【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.
【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.
【解答】解:由(1+i)z=1﹣7i,
得,
则|z|=.
故答案为:5.
【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
7、(2017·上海·统考高考真题)设、,且,则的最小值等于________
【答案】
【详解】 由三角函数的性质可知,,
所以,即,
所以,
所以.
8、(2021年上海高考真题)已知等比数列,的各项和为,则数列的各项和为________.
【答案】
因为的各项和为,
所以,解得,所以
即数列的各项和为
9、(2011·上海·高考真题)在相距2千米的、两点处测量目标,若,则、两点之间的距离是_______________ 千米.
【答案】
【详解】解:由A点向BC作垂线,垂足为D,设AC=x,
∵∠CAB=75°,∠CBA=60°,
∴∠ACB=180°-75°-60°=45°
∴AD=x
∴在Rt△ABD中,AB•sin60°= x
x=" 6" (千米)
答:A、C两点之间的距离为 千米.
故答案为 下由正弦定理求解:
∵∠CAB=75°,∠CBA=60°,
∴∠ACB=180°-75°-60°=45°
又相距2千米的A、B两点
∴ ,解得AC=
答:A、C两点之间的距离为 千米.
故答案为
10、(2013·上海·高考真题)在平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为__________
【答案】
【详解】根据提示,一个半径为1,高为的圆柱平放,一个高为2,底面面积的长方体,这两个几何体与放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即的体积值为.
【考点定位】考查旋转体组合体体积的计算,重点考查空间想象能力,属难题.
11、(2011·上海·高考真题)设是定义在上、以1为周期的函数,若在上的值域为,则在区间上的值域为___________________ .
【答案】
【分析】可根据是定义在上,以1为周期的函数,研究函数的性质,得,由此关系求出函数在在区间,上的值域即可.
【详解】由题意 在上成立,
故,
因为为上周期为1的函数,
所以
由此知自变量增大1,函数值也增大1
由在上的值域为,
可得在上的值域为,
在上的值域为,
……
在上的值域为,
在上的值域为,
……
在上的值域为,
故在,上的值域为,
故答案为:,
12、(2011·上海·高考真题)已知点、和,记的中点为,取和中的一条,记其端点为、,使之满足;记的中点为,取和中的一条,记其端点为、,使之满足;依次下去,得到点,则___ .
【答案】
【分析】设线段上到原点距离等于的点为,可得,根据已知条件可得,,,,中必有一点在的左侧,一点在的右侧,再由,,,是中点,可得出,,,的极限即为,即可求解.
【详解】
由可知和一个大于一个小于,
设线段上到原点距离等于的点为,由可得,
所以线段上到原点距离等于的点为,
若则和应在点的两侧,
所以第一次应取,
若,依次下去则,,,,中必有一点在的左侧,一点在的右侧,因为,,,是中点,
所以,,,的极限为,
所以,
故答案为:.
二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13、(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为( )
A.2 B.2 C.2 D.4
【考点】K4:椭圆的性质.版权所有
【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.
【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.
【解答】解:椭圆=1的焦点坐标在x轴,a=,
P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.
故选:C.
【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.
14、(2017·上海·统考高考真题)已知、、为实常数,数列的通项,,则“存在,
使得、、成等差数列”的一个必要条件是( )
A. B. C. D.
【答案】A
【详解】 存在,使得成等差数列,可得,
化简可得,所以使得成等差数列的必要条件是.
15、(2016·上海·统考高考真题)设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为.
A.1 B.2 C.3 D.4
【答案】B
【详解】试题分析:,,
又,,
注意到,只有这两组.故选B.
【考点】三角函数
【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.
16、(2022年上海高考真题)设集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z}
①存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧;
②存在直线l,使得集合Ω中存在无数点在l上;( )
A.①成立②成立 B.①成立②不成立
C.①不成立②成立 D.①不成立②不成立
【分析】分k=0,k>0,k<0,求出动点的轨迹,即可判定.
【解答】解:当k=0时,集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z}={(0,0)},
当k>0时,集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z},
表示圆心为(k,k2),半径为r=2的圆,
圆的圆心在直线y=x2上,半径r=f(k)=2单调递增,
相邻两个圆的圆心距d==,相邻两个圆的半径之和为l=2+2,
因为d>l有解,故相邻两个圆之间的位置关系可能相离,
当k<0时,同k>0的情况,故存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧,故①正确,
若直线l斜率不存在,显然不成立,
设直线l:y=mx+n,若考虑直线l与圆(x﹣k)2+(y﹣k2)2=4|k|的焦点个数,
d=,r=,
给定m,n,当k足够大时,均有d>r,
故直线l只与有限个圆相交,②错误.
故选:B.
【点评】本题考查了动点的轨迹、直线与圆的位置关系,属于中档题.
三、解答题(本大题共5小题,满分76分)
17、(2012·上海·高考真题)如图,在四棱锥P-ABCD中,底面ABCD是矩形,
PA⊥底面ABCD,E是PC的中点.已知AB=2,
AD=2,PA=2.求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.
【答案】(1);(2).
【详解】(1)因为PA⊥底面ABCD,所以PA⊥CD,又AD⊥CD,所以CD⊥平面PAD,
从而CD⊥PD.
因为PD=,CD=2,所以三角形PCD的面积为.
(2)
取PB中点F,连接EF、AF,则EF∥BC,
从而∠AEF(或其补角)是异面直线BC与AE所成的角 ,
在中,由EF=、AF=、AE=2,
则是等腰直角三角形,所以∠AEF=.
因此异面直线BC与AE所成的角的大小是
18、(2017·上海·统考高考真题)已知函数.
(1)求的单调递增区间;
(2)设为锐角三角形,角所对边,角所对边,若,求的面积.
【答案】(1);(2)
【分析】(1)利用降次公式化简,然后利用三角函数单调区间的求法,求得的单调递增区间.
(2)由求得,用余弦定理求得,由此求得三角形的面积.
【详解】(1)依题意,由得,令得.所以的单调递增区间.
(2)由于,所以为锐角,即.由,得,所以.
由余弦定理得,,解得或.
当时,,则为钝角,与已知三角形为锐角三角形矛盾.所以.
所以三角形的面积为.
【点睛】本小题主要考查二倍角公式,考查三角函数单调性的求法,考查余弦定理解三角形,考查三角形的面积公式,属于基础题.
19、(2016·上海·统考高考真题)有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走.于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图
(1)求菜地内的分界线的方程
(2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为.设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值
【答案】(1)().(2)五边形面积更接近于面积的“经验值”.
【详解】试题分析:(1)由上的点到直线与到点的距离相等,知是以为焦点、以
为准线的抛物线在正方形内的部分.
(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.
试题解析:(1)因为上的点到直线与到点的距离相等,所以是以为焦点、以
为准线的抛物线在正方形内的部分,其方程为().
(2)依题意,点的坐标为.
所求的矩形面积为,而所求的五边形面积为.
矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差
的绝对值为,所以五边形面积更接近于面积的“经验值”.
【考点】抛物线的定义及其标准方程、面积计算
【名师点睛】本题主要考查抛物线的实际应用,“出奇”之处在于有较浓的“几何味”,即研究几何图形的面积,解题关键在于能读懂题意.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力、数学的应用意识等.
20、(2011·上海·高考真题)已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.
⑴若与重合,求的焦点坐标;
⑵若,求的最大值与最小值;
⑶若的最小值为,求的取值范围.
【答案】(1)
(2)
(3)
【详解】解:⑴,椭圆方程为,
∴ 左、右焦点坐标为.
⑵ ,椭圆方程为,设,则
∴ 时; 时.
⑶设动点,则
∵ 当时,取最小值,且,∴ 且
解得.
21、(2019年上海高考真题)已知等差数列的公差,,数列满足,集合.
(1)若,求集合;
(2)若,求使得集合恰好有两个元素;
(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.
【解答】解:(1)等差数列的公差,,数列满足,集合.
当,
集合,0,.
(2),数列满足,集合恰好有两个元素,如图:
根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,
②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,
综上,或者.
(3)①当时,,集合,,,符合题意.
②当时,,,,或者,
等差数列的公差,,故,,又,2
当时满足条件,此时,1,.
③当时,,,,或者,因为,,故,2.
当时,,1,满足题意.
④当时,,,
所以或者,,,故,2,3.
当时,,满足题意.
⑤当时,,,所以,或者,,,故,2,3
当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,,,不符合条件.
当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,不是整数,不符合条件.
当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有或者,,或者,此时,均不是整数,不符合题意.
综上,,4,5,6.
真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用): 这是一份真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷052023年高考数学真题汇编重组卷解析版docx、真题重组卷052023年高考数学真题汇编重组卷参考答案docx、真题重组卷052023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
真题重组卷05——2023年高考数学真题汇编重组卷(天津专用): 这是一份真题重组卷05——2023年高考数学真题汇编重组卷(天津专用),文件包含真题重组卷05天津卷解析版docx、真题重组卷05天津卷参考答案docx、真题重组卷05天津卷原卷版docx等3份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
真题重组卷04——2023年高考数学真题汇编重组卷(天津专用): 这是一份真题重组卷04——2023年高考数学真题汇编重组卷(天津专用),文件包含真题重组卷04天津卷解析版docx、真题重组卷04天津卷参考答案docx、真题重组卷04天津卷原卷版docx等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。