所属成套资源:2023年高考数学真题汇编重组卷(新高考地区专用)
真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用)
展开
这是一份真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷052023年高考数学真题汇编重组卷解析版docx、真题重组卷052023年高考数学真题汇编重组卷参考答案docx、真题重组卷052023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
绝密★启用前
冲刺2023年高考数学真题重组卷05
新高考地区专用(解析版)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022年高考北京卷)已知集合,,则( )
A. B.
C. D.
B【解析】结合题意利用并集的定义计算即可.
【详解】由题意可得:.
故选:B.
2.(2022年高考全国I卷)若,则( )
A. B. C.1 D.2
D【解析】利用复数的除法可求,从而可求.
【详解】由题设有,故,故,
故选:D
3.(2022年高考全国I卷)在中,点D在边AB上,.记,则( )
A. B. C. D.
B【解析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
4.(2020高考全国新课标II卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
A.3699块 B.3474块 C.3402块 D.3339块
C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,
设为的前n项和,由题意可得,解方程即可得到n,进一步得到.
【详解】设第n环天石心块数为,第一层共有n环,
则是以9为首项,9为公差的等差数列,,
设为的前n项和,则第一层、第二层、第三层的块数分
别为,因为下层比中层多729块,
所以,
即
即,解得,
所以.
故选:C
【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
5.(2020年高考全国II卷)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )
A.2种 B.3种 C.6种 D.8种
C【解析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.
【详解】第一步,将3名学生分成两个组,有种分法
第二步,将2组学生安排到2个村,有种安排方法
所以,不同的安排方法共有种
故选:C
【点睛】解答本类问题时一般采取先组后排的策略.
6.(2021年高考天津卷)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为( )
A. B. C. D.
B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.
【详解】如下图所示,设两个圆锥的底面圆圆心为点,
设圆锥和圆锥的高之比为,即,
设球的半径为,则,可得,所以,,
所以,,,
,则,所以,,
又因为,所以,,
所以,,,
因此,这两个圆锥的体积之和为.
故选:B.
7.(2021年高考全国乙卷)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
C【解析】设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
【详解】设,由,因为 ,,所以
,
因为,当,即 时,,即 ,符合题意,由可得,即 ;
当,即时, ,即,化简得, ,显然该不等式不成立.
故选:C.
【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.
8.(2021年高考全国II卷)已知函数的定义域为,为偶函数,为奇函数,则( )
A. B. C. D.
B【解析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.
【详解】因为函数为偶函数,则,可得,
因为函数为奇函数,则,所以,,
所以,,即,
故函数是以为周期的周期函数,
因为函数为奇函数,则,
故,其它三个选项未知.
故选:B.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.
9.(2022年高考全国I卷)已知正方体,则( )
A.直线与所成的角为 B.直线与所成的角为
C.直线与平面所成的角为 D.直线与平面ABCD所成的角为
ABD
【解析】数形结合,依次对所给选项进行判断即可.
【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
因为四边形为正方形,则,故直线与所成的角为,A正确;
连接,因为平面,平面,则,
因为,,所以平面,
又平面,所以,故B正确;
连接,设,连接,
因为平面,平面,则,
因为,,所以平面,
所以为直线与平面所成的角,
设正方体棱长为,则,,,
所以,直线与平面所成的角为,故C错误;
因为平面,所以为直线与平面所成的角,易得,故D正确.
故选:ABD
10.(2020年高考全国II卷)已知a>0,b>0,且a+b=1,则( )
A. B.
C. D.
ABD【解析】根据,结合基本不等式及二次函数知识进行求解.
【详解】对于A,,
当且仅当时,等号成立,故A正确;
对于B,,所以,故B正确;
对于C,,
当且仅当时,等号成立,故C不正确;
对于D,因为,
所以,当且仅当时,等号成立,故D正确;
故选:ABD
【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
11.(2022年高考全国I卷)已知函数,则( )
A.有两个极值点 B.有三个零点
C.点是曲线的对称中心 D.直线是曲线的切线
AC【解析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
【详解】由题,,令得或,
令得,
所以在,上单调递增,上单调递减,所以是极值点,故A正确;
因,,,
所以,函数在上有一个零点,
当时,,即函数在上无零点,
综上所述,函数有一个零点,故B错误;
令,该函数的定义域为,,
则是奇函数,是的对称中心,
将的图象向上移动一个单位得到的图象,
所以点是曲线的对称中心,故C正确;
令,可得,又,
当切点为时,切线方程为,当切点为时,切线方程为,故D错误.
故选:AC.
12.(2022年高考全国乙卷)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
AC【解析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
【详解】[方法一]:几何法,双曲线定义的应用
情况一
M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
所以,因为,所以在双曲线的左支,
,, ,设,由即,则,
选A
情况二
若M、N在双曲线的两支,因为,所以在双曲线的右支,
所以,, ,设,
由,即,则,
所以,即,
所以双曲线的离心率
选C
[方法二]:答案回代法
特值双曲线
,
过且与圆相切的一条直线为,
两交点都在左支,,
,
则,
特值双曲线,
过且与圆相切的一条直线为,
两交点在左右两支,在右支,,
,
则,
[方法三]:
依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
若分别在左右支,
因为,且,所以在双曲线的右支,
又,,,
设,,
在中,有,
故即,
所以,
而,,,故,
代入整理得到,即,
所以双曲线的离心率
若均在左支上,
同理有,其中为钝角,故,
故即,
代入,,,整理得到:,
故,故,
故选:AC.
三、填空题:本题共4小题,每小题5分,共20分.
13.(2021年高考全国甲卷)已知函数的部分图像如图所示,则_______________.
【解析】首先确定函数的解析式,然后求解的值即可.
【详解】由题意可得:,
当时,,
令可得:,
据此有:.
故答案为:.
【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
14.(2021年高考天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.
【解析】根据甲猜对乙没有猜对可求出一次活动中,甲获胜的概率;在3次活动中,甲至少获胜2次分为甲获胜2次和3次都获胜求解.
【详解】由题可得一次活动中,甲获胜的概率为;
则在3次活动中,甲至少获胜2次的概率为.
故答案为:;.
15.(2020年高考全国II卷)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.
.【解析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.
【详解】如图:
取的中点为,的中点为,的中点为,
因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,
又四棱柱为直四棱柱,所以平面,所以,
因为,所以侧面,
设为侧面与球面的交线上的点,则,
因为球的半径为,,所以,
所以侧面与球面的交线上的点到的距离为,
因为,所以侧面与球面的交线是扇形的弧,
因为,所以,
所以根据弧长公式可得.
故答案为:.
【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.
16.(2021年高考北京卷)已知函数,给出下列四个结论:
①若,恰 有2个零点;
②存在负数,使得恰有1个零点;
③存在负数,使得恰有3个零点;
④存在正数,使得恰有3个零点.
其中所有正确结论的序号是_______.
①②④【解析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.
【详解】对于①,当时,由,可得或,①正确;
对于②,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,存在,使得只有一个零点,②正确;
对于③,当直线过点时,,解得,
所以,当时,直线与曲线有两个交点,
若函数有三个零点,则直线与曲线有两个交点,
直线与曲线有一个交点,所以,,此不等式无解,
因此,不存在,使得函数有三个零点,③错误;
对于④,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,当时,函数有三个零点,④正确.
故答案为:①②④.
【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:
(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;
(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;
(3)得解,即由列出的式子求出参数的取值范围.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(2020年高考全国II卷)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
问题:是否存在,它的内角的对边分别为,且,,________?
注:如果选择多个条件分别解答,按第一个解答计分.
详见解析【解析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.
【详解】[方法一]【最优解】:余弦定理
由可得:,不妨设,
则:,即.
若选择条件①:
据此可得:,,此时.
若选择条件②:
据此可得:,
则:,此时:,则:.
若选择条件③:
可得,,与条件矛盾,则问题中的三角形不存在.
[方法二]:正弦定理
由,得.
由,得,即,
得.由于,得.所以.
若选择条件①:
由,得,得.
解得.所以,选条件①时问题中的三角形存在,此时.
若选择条件②:
由,得,解得,则.
由,得,得.
所以,选条件②时问题中的三角形存在,此时.
若选择条件③:
由于与矛盾,所以,问题中的三角形不存在.
【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;
方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出.
18.(2021年高考全国乙卷)设是首项为1的等比数列,数列满足.已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
(1),;(2)证明见解析.【解析】(1)利用等差数列的性质及得到,解方程即可;
(2)利用公式法、错位相减法分别求出,再作差比较即可.
【详解】(1)因为是首项为1的等比数列且,,成等差数列,
所以,所以,
即,解得,所以,
所以.
(2)[方法一]:作差后利用错位相减法求和
,
,
.
设, ⑧
则. ⑨
由⑧-⑨得.
所以.
因此.
故.
[方法二]【最优解】:公式法和错位相减求和法
证明:由(1)可得,
,①
,②
①②得 ,
所以,
所以,
所以.
[方法三]:构造裂项法
由(Ⅰ)知,令,且,即,
通过等式左右两边系数比对易得,所以.
则,下同方法二.
[方法四]:导函数法
设,
由于,
则.
又,
所以
,下同方法二.
【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.
(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;
方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;
方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,
方法四利用导数方法求和,也是代替错位相减求和法的一种方法.
19.(2021高考北京卷)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.
现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.
(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.
(i)如果感染新冠病毒的2人在同一组,求检测的总次数;
(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的
分布列与数学期望E(X).
(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)
(1)①次;②分布列见解析;期望为;(2).【解析】(1)①由题设条件还原情境,即可得解;
②求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;
(2)求出两名感染者在一组的概率,进而求出,即可得解.
【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;
所以总检测次数为20次;
②由题意,可以取20,30,
,,
则的分布列:
所以;
(2)由题意,可以取25,30,
两名感染者在同一组的概率为,不在同一组的概率为,
则.
20.(2020年高考浙江卷 )如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.
(I)证明:EF⊥DB;
(II)求DF与面DBC所成角的正弦值.
(I)证明见解析;(II)【解析】()方法一:作交于,连接,由题意可知平面,即有,根据勾股定理可证得,又,可得,,即得平面,即证得;
(II)方法一:由,所以与平面所成角即为与平面所成角,作于,连接,即可知即为所求角,再解三角形即可求出与平面所成角的正弦值.
【详解】()[方法一]:几何证法
作交于,连接.
∵平面平面,而平面平面,平面,
∴平面,而平面,即有.
∵,
∴.
在中,,即有,∴.
由棱台的定义可知,,所以,,而,
∴平面,而平面,∴.
[方法二]【最优解】:空间向量坐标系方法
作交于O.
∵平面平面,而平面平面,平面,
∴平面,以为原点,建立空间直角坐标系如图所示.
设OC=1,∵,,
∴,∴,
∴,,
,
∴BC⊥BD,又∵棱台中BC//EF,∴EF⊥BD;
[方法三]:三余弦定理法
∵平面ACFD平面ABC,∴,
∴,
又∵DC =2BC.
∴,即,
又∵,∴.
(II)[方法一]:几何法
因为,所以与平面所成角即为与平面所成角.
作于,连接,由(1)可知,平面,
因为所以平面平面,而平面平面,
平面,∴平面.
即在平面内的射影为,即为所求角.
在中,设,则,,
∴.
故与平面所成角的正弦值为.
[方法二]【最优解】:空间向量坐标系法
设平面BCD的法向量为,
由()得,,
∴令,则,,,
,,
由于,∴直线与平面所成角的正弦值为.
[方法三]:空间向量法
以为基底,
不妨设,则
(由()的结论可得).
设平面的法向量为,
则由得取,得.
设直线与平面所成角为,
则直线与平面所成角也为,
由公式得.
[方法四]:三余弦定理法
由,
可知H在平面的射影G在的角平分线上.
设直线与平面所成角为,则与平面所成角也为.
由由()的结论可得,
由三余弦定理,得,
从而.
[方法五]:等体积法
设H到平面DBC的距离为h,
设,则,
设直线与平面所成角为,由已知得与平面所成角也为.
由,,
求得,所以.
【整体评价】()的方法一使用几何方法证明,方法二利用空间直角坐标系方法,简洁清晰,通性通法,确定为最优解;方法三使用了两垂直角的三余弦定理得到,进而证明,过程简洁,确定为最优解(II)的方法一使用几何做法,方法二使用空间坐标系方法,为通性通法,确定为最优解;方法三使用空间向量的做法,避开了辅助线的求作;方法四使用三余弦定理法,最为简洁,确定为最优解;方法五采用等体积转化法,避免了较复杂的辅助线.
21.(2021高考全国甲卷)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
(1)求C,的方程;
(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
(1)抛物线,方程为;(2)相切,理由见解析【解析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;
(2)方法一:先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出与的关系,最后求出点到直线的距离,即可得出结论.
【详解】(1)依题意设抛物线,
,
所以抛物线的方程为,
与相切,所以半径为,
所以的方程为;
(2)[方法一]:设
若斜率不存在,则方程为或,
若方程为,根据对称性不妨设,
则过与圆相切的另一条直线方程为,
此时该直线与抛物线只有一个交点,即不存在,不合题意;
若方程为,根据对称性不妨设
则过与圆相切的直线为,
又,
,此时直线关于轴对称,
所以直线与圆相切;
若直线斜率均存在,
则,
所以直线方程为,
整理得,
同理直线的方程为,
直线的方程为,
与圆相切,
整理得,
与圆相切,同理
所以为方程的两根,
,
到直线的距离为:
,
所以直线与圆相切;
综上若直线与圆相切,则直线与圆相切.
[方法二]【最优解】:设.
当时,同解法1.
当时,直线的方程为,即.
由直线与相切得,化简得,
同理,由直线与相切得.
因为方程同时经过点,所以的直线方程为,点M到直线距离为.
所以直线与相切.
综上所述,若直线与相切,则直线与相切.
【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用的对称性,抽象出与关系,把的关系转化为用表示,法二是利用相切等条件得到的直线方程为,利用点到直线距离进行证明,方法二更为简单,开拓学生思路
22.(2022年高考全国II卷)已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
(1)的减区间为,增区间为.(2);(3)见解析【解析】(1)求出,讨论其符号后可得的单调性.
(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
【详解】(1)当时,,则,
当时,,当时,,
故的减区间为,增区间为.
(2)设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
(3)取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,
故
,
故不等式成立.
【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.
相关试卷
这是一份真题重组卷04——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷042023年高考数学真题汇编重组卷解析版docx、真题重组卷042023年高考数学真题汇编重组卷参考答案docx、真题重组卷042023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份真题重组卷03——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷032023年高考数学真题汇编重组卷解析版docx、真题重组卷032023年高考数学真题汇编重组卷参考答案docx、真题重组卷032023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份真题重组卷02——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷022023年高考数学真题汇编重组卷解析版docx、真题重组卷022023年高考数学真题汇编重组卷参考答案docx、真题重组卷022023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。