终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      真题重组卷05——2023年高考数学真题汇编重组卷(原卷版).docx
    • 解析
      真题重组卷05——2023年高考数学真题汇编重组卷(解析版).docx
    • 练习
      真题重组卷05——2023年高考数学真题汇编重组卷(参考答案).docx
    真题重组卷05——2023年高考数学真题汇编重组卷(原卷版)第1页
    真题重组卷05——2023年高考数学真题汇编重组卷(原卷版)第2页
    真题重组卷05——2023年高考数学真题汇编重组卷(解析版)第1页
    真题重组卷05——2023年高考数学真题汇编重组卷(解析版)第2页
    真题重组卷05——2023年高考数学真题汇编重组卷(解析版)第3页
    真题重组卷05——2023年高考数学真题汇编重组卷(参考答案)第1页
    真题重组卷05——2023年高考数学真题汇编重组卷(参考答案)第2页
    真题重组卷05——2023年高考数学真题汇编重组卷(参考答案)第3页
    还剩3页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用)

    展开

    这是一份真题重组卷05——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷052023年高考数学真题汇编重组卷解析版docx、真题重组卷052023年高考数学真题汇编重组卷参考答案docx、真题重组卷052023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
    绝密★启用前
    冲刺2023年高考数学真题重组卷05
    新高考地区专用(解析版)
    注意事项:
    1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.(2022年高考北京卷)已知集合,,则(    )
    A. B.
    C. D.
    B【解析】结合题意利用并集的定义计算即可.
    【详解】由题意可得:.
    故选:B.
    2.(2022年高考全国I卷)若,则(    )
    A. B. C.1 D.2
    D【解析】利用复数的除法可求,从而可求.
    【详解】由题设有,故,故,
    故选:D
    3.(2022年高考全国I卷)在中,点D在边AB上,.记,则(    )
    A. B. C. D.
    B【解析】根据几何条件以及平面向量的线性运算即可解出.
    【详解】因为点D在边AB上,,所以,即,
    所以.
    故选:B.
    4.(2020高考全国新课标II卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )

    A.3699块 B.3474块 C.3402块 D.3339块
    C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,
    设为的前n项和,由题意可得,解方程即可得到n,进一步得到.
    【详解】设第n环天石心块数为,第一层共有n环,
    则是以9为首项,9为公差的等差数列,,
    设为的前n项和,则第一层、第二层、第三层的块数分
    别为,因为下层比中层多729块,
    所以,

    即,解得,
    所以.
    故选:C
    【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
    5.(2020年高考全国II卷)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有(    )
    A.2种 B.3种 C.6种 D.8种
    C【解析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.
    【详解】第一步,将3名学生分成两个组,有种分法
    第二步,将2组学生安排到2个村,有种安排方法
    所以,不同的安排方法共有种
    故选:C
    【点睛】解答本类问题时一般采取先组后排的策略.
    6.(2021年高考天津卷)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为(    )
    A. B. C. D.
    B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.
    【详解】如下图所示,设两个圆锥的底面圆圆心为点,
    设圆锥和圆锥的高之比为,即,

    设球的半径为,则,可得,所以,,
    所以,,,
    ,则,所以,,
    又因为,所以,,
    所以,,,
    因此,这两个圆锥的体积之和为.
    故选:B.
    7.(2021年高考全国乙卷)设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是(    )
    A. B. C. D.
    C【解析】设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
    【详解】设,由,因为 ,,所以

    因为,当,即 时,,即 ,符合题意,由可得,即 ;
    当,即时, ,即,化简得, ,显然该不等式不成立.
    故选:C.
    【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.
    8.(2021年高考全国II卷)已知函数的定义域为,为偶函数,为奇函数,则(    )
    A. B. C. D.
    B【解析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.
    【详解】因为函数为偶函数,则,可得,
    因为函数为奇函数,则,所以,,
    所以,,即,
    故函数是以为周期的周期函数,
    因为函数为奇函数,则,
    故,其它三个选项未知.
    故选:B.
    二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.
    9.(2022年高考全国I卷)已知正方体,则(    )
    A.直线与所成的角为 B.直线与所成的角为
    C.直线与平面所成的角为 D.直线与平面ABCD所成的角为
    ABD
    【解析】数形结合,依次对所给选项进行判断即可.
    【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
    因为四边形为正方形,则,故直线与所成的角为,A正确;

    连接,因为平面,平面,则,
    因为,,所以平面,
    又平面,所以,故B正确;
    连接,设,连接,
    因为平面,平面,则,
    因为,,所以平面,
    所以为直线与平面所成的角,
    设正方体棱长为,则,,,
    所以,直线与平面所成的角为,故C错误;
    因为平面,所以为直线与平面所成的角,易得,故D正确.
    故选:ABD
    10.(2020年高考全国II卷)已知a>0,b>0,且a+b=1,则(    )
    A. B.
    C. D.
    ABD【解析】根据,结合基本不等式及二次函数知识进行求解.
    【详解】对于A,,
    当且仅当时,等号成立,故A正确;
    对于B,,所以,故B正确;
    对于C,,
    当且仅当时,等号成立,故C不正确;
    对于D,因为,
    所以,当且仅当时,等号成立,故D正确;
    故选:ABD
    【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
    11.(2022年高考全国I卷)已知函数,则(    )
    A.有两个极值点 B.有三个零点
    C.点是曲线的对称中心 D.直线是曲线的切线
    AC【解析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
    【详解】由题,,令得或,
    令得,
    所以在,上单调递增,上单调递减,所以是极值点,故A正确;
    因,,,
    所以,函数在上有一个零点,
    当时,,即函数在上无零点,
    综上所述,函数有一个零点,故B错误;
    令,该函数的定义域为,,
    则是奇函数,是的对称中心,
    将的图象向上移动一个单位得到的图象,
    所以点是曲线的对称中心,故C正确;
    令,可得,又,
    当切点为时,切线方程为,当切点为时,切线方程为,故D错误.
    故选:AC.
    12.(2022年高考全国乙卷)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为(    )
    A. B. C. D.
    AC【解析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
    【详解】[方法一]:几何法,双曲线定义的应用
    情况一
    M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
    所以,因为,所以在双曲线的左支,
    ,, ,设,由即,则,




    选A
    情况二

    若M、N在双曲线的两支,因为,所以在双曲线的右支,
    所以,, ,设,
    由,即,则,



    所以,即,
    所以双曲线的离心率
    选C
    [方法二]:答案回代法

    特值双曲线

    过且与圆相切的一条直线为,
    两交点都在左支,,

    则,

    特值双曲线,
    过且与圆相切的一条直线为,
    两交点在左右两支,在右支,,

    则,
    [方法三]:
    依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
    若分别在左右支,
    因为,且,所以在双曲线的右支,
    又,,,
    设,,
    在中,有,
    故即,
    所以,
    而,,,故,
    代入整理得到,即,
    所以双曲线的离心率

    若均在左支上,

    同理有,其中为钝角,故,
    故即,
    代入,,,整理得到:,
    故,故,
    故选:AC.
    三、填空题:本题共4小题,每小题5分,共20分.
    13.(2021年高考全国甲卷)已知函数的部分图像如图所示,则_______________.

    【解析】首先确定函数的解析式,然后求解的值即可.
    【详解】由题意可得:,
    当时,,
    令可得:,
    据此有:.
    故答案为:.
    【点睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
    (1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
    (2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
    14.(2021年高考天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.
         【解析】根据甲猜对乙没有猜对可求出一次活动中,甲获胜的概率;在3次活动中,甲至少获胜2次分为甲获胜2次和3次都获胜求解.
    【详解】由题可得一次活动中,甲获胜的概率为;
    则在3次活动中,甲至少获胜2次的概率为.
    故答案为:;.
    15.(2020年高考全国II卷)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.
    .【解析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.
    【详解】如图:

    取的中点为,的中点为,的中点为,
    因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,
    又四棱柱为直四棱柱,所以平面,所以,
    因为,所以侧面,
    设为侧面与球面的交线上的点,则,
    因为球的半径为,,所以,
    所以侧面与球面的交线上的点到的距离为,
    因为,所以侧面与球面的交线是扇形的弧,
    因为,所以,
    所以根据弧长公式可得.
    故答案为:.
    【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.
    16.(2021年高考北京卷)已知函数,给出下列四个结论:
    ①若,恰 有2个零点;
    ②存在负数,使得恰有1个零点;
    ③存在负数,使得恰有3个零点;
    ④存在正数,使得恰有3个零点.
    其中所有正确结论的序号是_______.
    ①②④【解析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.
    【详解】对于①,当时,由,可得或,①正确;
    对于②,考查直线与曲线相切于点,
    对函数求导得,由题意可得,解得,
    所以,存在,使得只有一个零点,②正确;
    对于③,当直线过点时,,解得,
    所以,当时,直线与曲线有两个交点,
    若函数有三个零点,则直线与曲线有两个交点,
    直线与曲线有一个交点,所以,,此不等式无解,
    因此,不存在,使得函数有三个零点,③错误;
    对于④,考查直线与曲线相切于点,
    对函数求导得,由题意可得,解得,
    所以,当时,函数有三个零点,④正确.

    故答案为:①②④.
    【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:
    (1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;
    (2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;
    (3)得解,即由列出的式子求出参数的取值范围.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17.(2020年高考全国II卷)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
    问题:是否存在,它的内角的对边分别为,且,,________?
    注:如果选择多个条件分别解答,按第一个解答计分.
    详见解析【解析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.
    【详解】[方法一]【最优解】:余弦定理
    由可得:,不妨设,
    则:,即.
    若选择条件①:
    据此可得:,,此时.
    若选择条件②:
    据此可得:,
    则:,此时:,则:.
    若选择条件③:
    可得,,与条件矛盾,则问题中的三角形不存在.
    [方法二]:正弦定理
    由,得.
    由,得,即,
    得.由于,得.所以.
    若选择条件①:
    由,得,得.
    解得.所以,选条件①时问题中的三角形存在,此时.
    若选择条件②:
    由,得,解得,则.
    由,得,得.
    所以,选条件②时问题中的三角形存在,此时.
    若选择条件③:
    由于与矛盾,所以,问题中的三角形不存在.
    【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;
    方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出.
    18.(2021年高考全国乙卷)设是首项为1的等比数列,数列满足.已知,,成等差数列.
    (1)求和的通项公式;
    (2)记和分别为和的前n项和.证明:.
    (1),;(2)证明见解析.【解析】(1)利用等差数列的性质及得到,解方程即可;
    (2)利用公式法、错位相减法分别求出,再作差比较即可.
    【详解】(1)因为是首项为1的等比数列且,,成等差数列,
    所以,所以,
    即,解得,所以,
    所以.
    (2)[方法一]:作差后利用错位相减法求和



    设,    ⑧
    则.     ⑨
    由⑧-⑨得.
    所以.
    因此.
    故.
    [方法二]【最优解】:公式法和错位相减求和法
    证明:由(1)可得,
    ,①
    ,②
    ①②得 ,
    所以,
    所以,
    所以.
    [方法三]:构造裂项法
    由(Ⅰ)知,令,且,即,
    通过等式左右两边系数比对易得,所以.
    则,下同方法二.
    [方法四]:导函数法
    设,
    由于,
    则.
    又,
    所以
    ,下同方法二.
    【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.
    (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;
    方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;
    方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,
    方法四利用导数方法求和,也是代替错位相减求和法的一种方法.
    19.(2021高考北京卷)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.
    现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.
    (I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.
    (i)如果感染新冠病毒的2人在同一组,求检测的总次数;
    (ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的
    分布列与数学期望E(X).
    (II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)
    (1)①次;②分布列见解析;期望为;(2).【解析】(1)①由题设条件还原情境,即可得解;
    ②求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;
    (2)求出两名感染者在一组的概率,进而求出,即可得解.
    【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;
    所以总检测次数为20次;
    ②由题意,可以取20,30,
    ,,
    则的分布列:







    所以;
    (2)由题意,可以取25,30,
    两名感染者在同一组的概率为,不在同一组的概率为,
    则.
    20.(2020年高考浙江卷 )如图,三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.

    (I)证明:EF⊥DB;
    (II)求DF与面DBC所成角的正弦值.
    (I)证明见解析;(II)【解析】()方法一:作交于,连接,由题意可知平面,即有,根据勾股定理可证得,又,可得,,即得平面,即证得;
    (II)方法一:由,所以与平面所成角即为与平面所成角,作于,连接,即可知即为所求角,再解三角形即可求出与平面所成角的正弦值.
    【详解】()[方法一]:几何证法
    作交于,连接.
    ∵平面平面,而平面平面,平面,
    ∴平面,而平面,即有.
    ∵,
    ∴.
    在中,,即有,∴.
    由棱台的定义可知,,所以,,而,
    ∴平面,而平面,∴.
    [方法二]【最优解】:空间向量坐标系方法
    作交于O.
    ∵平面平面,而平面平面,平面,
    ∴平面,以为原点,建立空间直角坐标系如图所示.
    设OC=1,∵,,
    ∴,∴,
    ∴,,
    ,
    ∴BC⊥BD,又∵棱台中BC//EF,∴EF⊥BD;

    [方法三]:三余弦定理法
    ∵平面ACFD平面ABC,∴,
    ∴,
    又∵DC =2BC.
    ∴,即,
    又∵,∴.
    (II)[方法一]:几何法
    因为,所以与平面所成角即为与平面所成角.
    作于,连接,由(1)可知,平面,
    因为所以平面平面,而平面平面,
    平面,∴平面.
    即在平面内的射影为,即为所求角.
    在中,设,则,,
    ∴.
    故与平面所成角的正弦值为.

    [方法二]【最优解】:空间向量坐标系法
    设平面BCD的法向量为,
    由()得,,
    ∴令,则,,,
    ,,
    由于,∴直线与平面所成角的正弦值为.
    [方法三]:空间向量法
    以为基底,

    不妨设,则
    (由()的结论可得).
    设平面的法向量为,
    则由得取,得.
    设直线与平面所成角为,
    则直线与平面所成角也为,
    由公式得.
    [方法四]:三余弦定理法
    由,
    可知H在平面的射影G在的角平分线上.
    设直线与平面所成角为,则与平面所成角也为.
    由由()的结论可得,
    由三余弦定理,得,
    从而.
    [方法五]:等体积法
    设H到平面DBC的距离为h,
    设,则,
    设直线与平面所成角为,由已知得与平面所成角也为.
    由,,
    求得,所以.
    【整体评价】()的方法一使用几何方法证明,方法二利用空间直角坐标系方法,简洁清晰,通性通法,确定为最优解;方法三使用了两垂直角的三余弦定理得到,进而证明,过程简洁,确定为最优解(II)的方法一使用几何做法,方法二使用空间坐标系方法,为通性通法,确定为最优解;方法三使用空间向量的做法,避开了辅助线的求作;方法四使用三余弦定理法,最为简洁,确定为最优解;方法五采用等体积转化法,避免了较复杂的辅助线.
    21.(2021高考全国甲卷)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
    (1)求C,的方程;
    (2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
    (1)抛物线,方程为;(2)相切,理由见解析【解析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;
    (2)方法一:先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出与的关系,最后求出点到直线的距离,即可得出结论.
    【详解】(1)依题意设抛物线,

    所以抛物线的方程为,
    与相切,所以半径为,
    所以的方程为;
    (2)[方法一]:设
    若斜率不存在,则方程为或,
    若方程为,根据对称性不妨设,
    则过与圆相切的另一条直线方程为,
    此时该直线与抛物线只有一个交点,即不存在,不合题意;
    若方程为,根据对称性不妨设
    则过与圆相切的直线为,
    又,
    ,此时直线关于轴对称,
    所以直线与圆相切;
    若直线斜率均存在,
    则,
    所以直线方程为,
    整理得,
    同理直线的方程为,
    直线的方程为,
    与圆相切,
    整理得,
    与圆相切,同理
    所以为方程的两根,

    到直线的距离为:


    所以直线与圆相切;
    综上若直线与圆相切,则直线与圆相切.
    [方法二]【最优解】:设.
    当时,同解法1.
    当时,直线的方程为,即.
    由直线与相切得,化简得,
    同理,由直线与相切得.
    因为方程同时经过点,所以的直线方程为,点M到直线距离为.
    所以直线与相切.
    综上所述,若直线与相切,则直线与相切.
    【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用的对称性,抽象出与关系,把的关系转化为用表示,法二是利用相切等条件得到的直线方程为,利用点到直线距离进行证明,方法二更为简单,开拓学生思路
    22.(2022年高考全国II卷)已知函数.
    (1)当时,讨论的单调性;
    (2)当时,,求a的取值范围;
    (3)设,证明:.
    (1)的减区间为,增区间为.(2);(3)见解析【解析】(1)求出,讨论其符号后可得的单调性.
    (2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
    (3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
    【详解】(1)当时,,则,
    当时,,当时,,
    故的减区间为,增区间为.
    (2)设,则,
    又,设,
    则,
    若,则,
    因为为连续不间断函数,
    故存在,使得,总有,
    故在为增函数,故,
    故在为增函数,故,与题设矛盾.
    若,则,
    下证:对任意,总有成立,
    证明:设,故,
    故在上为减函数,故即成立.
    由上述不等式有,
    故总成立,即在上为减函数,
    所以.
    当时,有,    
    所以在上为减函数,所以.
    综上,.
    (3)取,则,总有成立,
    令,则,
    故即对任意的恒成立.
    所以对任意的,有,
    整理得到:,


    故不等式成立.
    【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.

    相关试卷

    真题重组卷04——2023年高考数学真题汇编重组卷(新高考地区专用):

    这是一份真题重组卷04——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷042023年高考数学真题汇编重组卷解析版docx、真题重组卷042023年高考数学真题汇编重组卷参考答案docx、真题重组卷042023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。

    真题重组卷03——2023年高考数学真题汇编重组卷(新高考地区专用):

    这是一份真题重组卷03——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷032023年高考数学真题汇编重组卷解析版docx、真题重组卷032023年高考数学真题汇编重组卷参考答案docx、真题重组卷032023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    真题重组卷02——2023年高考数学真题汇编重组卷(新高考地区专用):

    这是一份真题重组卷02——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷022023年高考数学真题汇编重组卷解析版docx、真题重组卷022023年高考数学真题汇编重组卷参考答案docx、真题重组卷022023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map