小学数学人教版六年级下册式与方程精品练习题
展开小升初考点-式与方程(押题卷)
2023年六年级下册数学专项培优卷(人教版)
一.选择题(共20小题)
1.已知mn=c,cb=a,且a、b、c、m、n都是非零的自然数,那么下列的比例式中正确的是( )
A.mn=ba B.mn=ab C.ma=bn D.an=bm
2.当a=10,b=40时,3a2﹣b的结果是( )
A.0 B.260 C.360 D.300
3.下面式子中不是等式的是( )
A.4x+8 B.3x+2=6 C.5+7=12
4.含有( )的等式叫方程.
A.字母 B.未知数 C.等号
5.下面各题中是方程的是( )
A.3x+5>3 B.x-34×27% C.12x=9 D.56x≠13
6.在下列式子中,( )不是方程.
A.x+32=3 B.8x=112 C.x﹣64=36 D.x+88
7.若4x+8=28,那么8x+9=( )
A.49 B.48 C.5
8.x等于( )时,4x﹣9=27.
A.9 B.4.5 C.8
9.x=0.5是方程( )的解.
A.2x+6=7 B.4x=8 C.9.2+x=9.25 D.x-12x=11
10.方程x+30%x=32.5的解是( )
A.x=25 B.x=30 C.x=35
11.甲数是a,比乙数的5倍多b,乙数是( )
A.(a+b)÷5 B.(a﹣b)÷5 C.a÷5+b D.a÷5﹣b
12.当x=2,y=1.5时,3x2+4y=( )
A.18 B.30 C.42
13.下面的等式中,正确的是( )
A.a﹣b=b﹣a B.a÷b=b÷a
C.ab+ac=a(b+c)
14.下列各式中,是方程的是( )
A.2x+5 B.8+x=12 C.3+6.5=9.5
15.运用等式的性质进行的变形,正确的是( )
A.如果a=b,那么a+b=b﹣c B.如果ac=bc,那么 a=b
C.如果a=b,那么ac=bc D.如果a2=3a,那么 a=3
16.下面各式中,不属于方程的是( )
A.5x+2 B.300+6x=330 C.280=50+x D.x÷25=0.36
17.已知方程4x+6=14,则2x+2=( )
A.4 B.6 C.8
18.方程2.8x﹣1.2x=8的解与下面方程( )的解相同.
A.2.5+2x=7.5 B.3x﹣1.5=13.5
C.0.8x﹣0.2x=0.3
19.方程2x=1的解与( )的解相等.
A.4x=2 B.x÷2=1 C.3x=6
20.三个同学根据“x的8%比y多1”列方程,正确的是( )
A.80%x﹣y=1 B.8%x=y+1 C.8%x=y﹣1
二.填空题(共10小题)
21.王阿姨买了4盒冰激凌,付了a元,找回b元,4盒冰激凌的总价是 元,冰激凌的单价是 元.
22.爸爸今年m岁,比儿子大n岁,m﹣n表示 .
23.217÷ = ×138=1= + .
24.a×17+b×17=30,那么2(a+b)= .
25.含有未知数的等式叫做 .
26.在①3x+4x=48 ②69+5n③5+3x>60 ④12﹣3=9⑤x+x﹣3=0 中,是方程的有 ,是等式的有 .
27.方程是 ,但 不一定是方程.
28.18分成两个数,使它们的和是差的3倍,这两个数分别是 和 。
29.解下列方程并自觉进行检验。
4.5x+x=55
x=
30.若a:b=2:3,b:c=1:2,且a+b+c=66,则a= .
三.判断题(共10小题)
31.如果a÷b=35,那么a=3,b=5. .(判断对错)
32.x+2y﹣1的值是3,则2x+4y+1=9。 (判断对错)
33.a、b是两个不为零的数,若a的12等b的13,那么b是a的23. .(判断对错)
34.方程就是等式,等式也是方程. .(判断对错)
35.因为方程是等式,所以等式也是方程. .(判断对错)
36.所有的方程都是等式,所有的等式都是方程. (判断对错)
37.方程2x=0无解。 (判断对错)
38.3.51是方程7x÷3=8.19的解. (判断对错)
39.如果a与b互为倒数,且20a=bx,那么x=120. .
40.a、b、x都是非0自然数,如果ax-1x>bx-1x,那么a>b. .
四.计算题(共3小题)
41.直接写出计算结果.
8x+6x=
6.5b﹣5.5b=
0.52=
0.5×2=
6x+3x﹣4x=
3.6a+5.4a+a=
42.解方程。
①42x﹣0.6×100=26.1 ②10x﹣6x=1.2
43.解方程.
23x=49
34+25x=910
34x-12x=94
五.应用题(共3小题)
44.小明去商店买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支.
(1)用2本笔记本可以换几支铅笔?
(2)假如每本笔记本比每支铅笔贵a元,那么小明所带的钱可以怎样表示?(用只含有字母a的式子来表示)
45.列出方程,并求出方程的解.
一个数的3倍加上这个数的1.5倍等于22.5,这个数是多少?
46.列方程,并求出方程的解.
一个数的7.2倍加上它的2.8倍,和是2.5,求这个数.
小升初考点-式与方程(押题卷)
2023年六年级下册数学专项培优卷(人教版)
参考答案与试题解析
一.选择题(共20小题)
1.【答案】C
【分析】把mn=c代入cb=a,得mn=ab,再找一下四个选项的比例中哪个的内项积和外项积是mn=ab即可。
【解答】解:把mn=c代入cb=a,得mn=ab
因为ma=bn,得mn=ab
所以选项C正确。
故选:C。
【点评】熟练掌握比例的基本性质。
2.【答案】B
【分析】当a=10,b=40时,根据题目给出的数值,分析含有字母的式子“3a2“表示3×a×a,然后直接把数字代入含有字母的式子里变成算式算出结果即可。
【解答】解:3a2﹣b
=3×102﹣40
=3×100﹣40
=260
故选:B。
【点评】在数学中,我们常常用字母来表示一个数,然后通过四则运算求解出那个字母所表示的数.通常我们所谓的求解x的方程也是含字母式子的求值。
3.【答案】A
【分析】表示相等关系的式子叫做等式.由此进行选择.
【解答】解:A、4x+8,只是含有未知数的式子,不是等式;
B、3x+2=6,是等式;
C、5+7=12,是等式;
故选:A.
【点评】此题考查了等式的意义及辨析.
4.【答案】B
【分析】含有未知数的等式叫方程,根据方程的意义直接选择.
【解答】解;含有未知数的等式叫方程.
故选:B.
【点评】此题考查方程的意义.
5.【答案】C
【分析】根据含有未知数的等式叫做方程,可知只有C符合方程的条件:含有未知数、等式.由此做出选择.
【解答】解:A、是不等式,不是方程;
B、是式子,不是方程;
C、是等式,含有未知数,所以是方程.
故选:C.
【点评】解决此题关键是明确方程的意义,必须是含有未知数的等式才是方程.
6.【答案】D
【分析】含有未知数的等式叫做方程;根据方程的意义逐项分析后再选择.
【解答】解:x+32=3,8x=112,x﹣64=36,既含有未知数,又是等式,符合方程的意义,所以是方程.
x+88,虽然含有未知数,但它不是等式,所以不是方程.
故选:D。
【点评】此题主要考查根据方程的意义来辨识方程,明确只有含有未知数的等式才是方程.
7.【答案】A
【分析】根据等式的性质,4x+8=28的两边同时减去8,再同时除以4,求出方程的解,然后再代入8x+9求出值即可。
【解答】解:4x+8=28
4x+8﹣8=28﹣8
4x=20
4x÷4=20÷4
x=5
把x=5代入8x+9可得:
8×5+9
=40+9
=49
故选:A。
【点评】本题考查解方程,解题的关键是掌握等式的性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立。
8.【答案】A
【分析】根据等式的性质,方程两边同时加上9,再两边同时除以4求解.
【解答】解:4x﹣9=27
4x﹣9+9=27+9
4x=36
4x÷4=36÷4
x=9
故选:A.
【点评】此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐.
9.【答案】A
【分析】把x=0.5分别代入每一个选项中,如果能使方程左右两边相等,就说明它是这个方程的解,否则x=0.5就不是这个方程的解.
【解答】解:把x=0.5分别代入每一个方程,则有
A、因为2×0.5+6=7,所以x=0.5是这个方程的解;
B、因为4×0.5=2≠8,所以x=0.5不是这个方程的解;
C、因为9.2+0.5=9.7≠9.25,所以x=0.5不是这个方程的解;
D、因为0.5-12×0.5=0.25,所以x=0.5不是这个方程的解.
故选:A.
【点评】此题主要考查了检验方程的解的方法,要熟练掌握.
10.【答案】A
【分析】(1)先计算x+30%x=1.3x,然后等式的两边同时除以1.3;再进一步选择即可.
【解答】解:根据题意可得:
x+30%x=32.5,
1.3x=32.5,
1.3x÷1.3=32.5÷1.3,
x=25;
所以,方程x+30%x=32.5的解是:x=25.
故选:A.
【点评】本题主要考查解方程,根据等式的性质进行解答即可.
11.【答案】B
【分析】根据“比乙数的5倍多b,”知道甲数=乙数×5+b,由此先求出乙数的5倍,进而求出乙数.
【解答】解:(a﹣b)÷5.
故选:B.
【点评】此题属于典型的反叙的文字题,注意一定要根据数量关系与要求的问题,确定计算方法.
12.【答案】A
【分析】把x=2,y=1.5,代入3x2+4y计算即可。
【解答】解:当x=2,y=1.5时,
3x2+4y
=3×22+4×1.5
=12+6
=18
答:这个式子的值是18。
故选:A。
【点评】此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值。
13.【答案】C
【分析】对选项逐个分析,找出正确的选项.
【解答】解:A,a﹣b,b﹣a,当a和b不同时为0时两个算式不会相等,故本选项不正确;
B,a÷b=ab,b÷a=ba,当a和b不同时为1时两个算式不会相等,故本选项不正确;
C,ab+ac=a(b+c),这是乘法分配律,等式成立,本选项正确.
故选:C.
【点评】注意选项A和B,不是运算定律,不要当成了加法和乘法的交换律.
14.【答案】B
【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行选择.
【解答】解:A、2x+5,虽然含未知数,但不是等式,所以不是方程;
B、8+x=12,是含有未知数的等式,是方程;
C、3+6.5=9.5,虽然是等式,但不含有未知数,所以不是方程;
故选:B.
【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.
15.【答案】B
【分析】利用等式的性质对每个等式进行变形即可找出答案.
【解答】解:A:如果a=b,那么a﹣c=b﹣c,而不是a+b=b﹣c,本选项错误;
B:如果ac=bc,c在已知数的分母上,所以c≠0,那么ac=bc的两边同时乘上c,即:
ac×c=bc×c,也就是a=b,本选项正确;
C:如果a=b,如果等式的两边同时除以c(c不为0)那么ac=bc,但是本题没有说明c≠0,所以本选项错误;
D:如果a2=3a,如果a≠0,那么a=3,如果a=0,那么a=3就不成立.
故选:B.
【点评】本题主要考查了等式的基本性质.
等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;
2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.
16.【答案】A
【分析】方程是指含有未知数的等式;所以方程必须具备两个条件:①含有未知数;②等式。据此解答。
【解答】解:5x+2不是等式,因此不是方程。
故选:A。
【点评】此题考查方程的辨识:只有含有未知数的等式才是方程。
17.【答案】B
【分析】根据等式的性质,方程4x+6=14的两边同时减6,然后同时除以4,即可得到x的值,然后将x的值代入2x+2,计算即可解答本题.
【解答】解:4x+6=14,
4x+6﹣6=14﹣6
4x=8
4x÷4=8÷4
x=2
2x+2
=2×2+2
=4+2
=6
故选:B.
【点评】本题考查方程的解和解方程,明确解方程的方法是解答本题的关键.
18.【答案】B
【分析】要想知道方程2.8x﹣1.2x=8的解与下面哪个方程的解相同,应先求出方程2.8x﹣1.2x=8的解,再把方程的解分别代入下面各方程,看看左边是否等于右边,据此解答.
【解答】解:2.8x﹣1.2x=8,
(2.8﹣1.2)x=8,
1.6x=8,
1.6x÷1.6=8÷1.6,
x=5;
把x=5代入2.5+2x=7.5中,左边=2.5+2×5=12.5≠右边,因此x=5不是2.5+2x=7.5的解;
把x=5代入3x﹣1.5=13.5中,左边=3×5﹣1.5=13.5=右边,因此x=5是3x﹣1.5=13.5的解;
把x=5代入0.8x﹣0.2x=0.3中,左边=0.8×5﹣0.2×5=3≠右边,因此x=5不是0.8x﹣0.2x=0.3的解;
因此,x=5是3x﹣1.5=13.5的解;
故选:B.
【点评】此题考查了解方程以及判断一个数是否是方程的解,在解方程时应根据等式的性质,同时注意“=”上下要对齐.
19.【答案】A
【分析】先求得方程2x=1的解是x=12,再求得题干中A、B、C选项中的方程的解,对比即可选择.
【解答】解:方程2x=1的解是:x=12;
A、4x=2的解是:x=12,符合题意;
B、x÷2=1的解是:x=2,不符合题意;
C、3x=6的解是:x=2,不符合题意;
故选:A.
【点评】此类选择问题,分别求得它们的解,利用排除法解答.
20.【答案】B
【分析】首先用x乘8%,求出x的8%是多少,然后根据“x的8%比y多1”,可得x的8%﹣y=1;最后根据“x的8%比y多1”,可得“x的8%等于y和1的和”,所以x的8%=y+1,据此列出方程即可.
【解答】解:根据“x的8%比y多1”列方程,
可得8%x﹣y=1或8%x=y+1,
所以三个同学根据“x的8%比y多1”列方程,正确的是:
8%x=y+1.
故选:B.
【点评】此题主要考查了根据题意列方程的能力,要熟练掌握,解答此题的关键是弄清楚先求什么,再求什么,最后求什么.
二.填空题(共10小题)
21.【答案】(a﹣b),(a﹣b)÷4.
【分析】用含字母的式子表示数量关系,付的钱数﹣找回的钱数=买4盒冰激凌所花的钱数,再根据“总价÷数量=单价”即可冰激凌的单价,由此解答即可.
【解答】解:因为,付的钱数﹣找回的钱数=买4盒冰激凌所花的钱数.
所以4盒冰激凌的总价是:(a﹣b)
冰激凌的单价是(a﹣b)÷4
故答案为:a﹣b,(a﹣b)÷4.
【点评】本题的关键是付的钱数﹣找回的钱数=买4盒冰激凌所花的钱数,再根据“总价÷数量=单价”即可冰激凌的单价,再进行选择.
22.【答案】见试题解答内容
【分析】m是爸爸的年龄,n是爸爸比儿子大的年龄,爸爸的年龄减去比儿子大的年龄就是儿子的年龄.
【解答】解:m﹣n是爸爸的年龄减去比儿子大的年龄就是儿子的年龄.
故答案为:儿子今年的岁数.
【点评】本题中用字母表示了具体的数,根据数量关系直接求解.
23.【答案】见试题解答内容
【分析】解决此题关键在于1,再根据四则运算各部分之间的关系求出未知数:用217除以1得第一个空的数值,用1除以138得第二个空的数值,再根据0加1就得1填写第三、四个空的数值.
【解答】解:因为217÷1=217,
1÷138=811,
0+1=1,
所以217÷217=811×138=1=0+1;
故答案为:217,811,0,1.
【点评】此题考查等式的意义,解决此题关键是根据四则运算各部分之间的关系求得未知数的数值.
24.【答案】见试题解答内容
【分析】依据等式的性质,即等式的两边同时加上、或减去、或乘上、或除以同一个不等于0的数,等式的左右两边仍然相等,据此即可解答.
【解答】解:因为a×17+b×17=30,
则:(a+b)×17=30,
(a+b)×17×7=30×7,
a+b=210,
(a+b)×2=210×2,
2(a+b)=420;
故答案为:420.
【点评】此题主要考查了利用等式的性质求出(a+b)的值,然后用代入法求出问题.
25.【答案】见试题解答内容
【分析】根据方程的意义,直接判断即可.
【解答】解:含有未知数的等式叫做方程.
故判断为:方程.
【点评】此题考查方程的意义:含有未知数的等式叫做方程.
26.【答案】见试题解答内容
【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此进行分类.
【解答】解:①3x+4x=48,既含有未知数,又是等式,所以既是等式,又是方程;
②69+5n,只是含有未知数的式子,所以既不是等式,又不是方程;
③5+3x>60,是含有未知数的不等式,所以既不是等式,又不是方程;
④12﹣3=9,只是用“=”连接的式子,没含有未知数,所以只是等式,不是方程;
⑤x+x﹣3=0,既含有未知数,又是等式,所以既是等式,又是方程;
所以方程有:①⑤,等式有:①④⑤.
故答案为:①⑤,①④⑤.
【点评】此题考查等式和方程的辨识,熟记定义,才能快速辨识.
27.【答案】见试题解答内容
【分析】方程是指含有未知数的等式,等式是指用“=”号连接的式子,等式中不一定含有未知数,所以等式不一定是方程,它只是等式的一部分.据此解答.
【解答】解:方程是 含有未知数的等式,但等式不一定是方程.
故答案为:含有未知数的等式,等式.
【点评】此题考查方程与等式的关系:所有的方程都是等式,但等式不一定是方程.
28.【答案】6;12。
【分析】假设其中较小的一个数是x,则另一个数是(18﹣x),这两个数的和还是18,这两个数的差是(18﹣x﹣x),根据它们的和是差的3倍,列出方程进行解答。
【解答】解:设其中较小的一个数是x,则另一个数是(18﹣x),根据题意可得:
(18﹣x﹣x)×3=18
(18﹣x﹣x)×3÷3=18÷3
18﹣2x=6
18﹣2x+2x=6+2x
6+2x=18
6+2x﹣6=18﹣6
2x=12
2x÷2=12÷2
x=6
18﹣6=12
答:这两个数分别是6和12。
【点评】此题的解题关键是弄清题意,把其中一个数设为未知数x,找出题目中的等量关系系,列出方程进行解答即可。
29.【答案】10。
【分析】先化简4.5x+x,然后方程的两边同时除以(4.5+1)的差,求出未知数;然后将未知数的值代入原方程,看方程的左右两边是否相等即可。
【解答】解:4.5x+x=55
5.5x=55
5.5x÷5.5=55÷5.5
x=10
检验:把x=10代入原方程,左边=4.5×10+10=45+10=55,右边=55,左边=右边,所以x=10是原方程的解。
故答案为:10。
【点评】本题考查了方程的解法及检验方法,解方程的过程要利用等式的性质。
30.【答案】见试题解答内容
【分析】据比的基本性质,b:c=1:2=(1×3):(2×3)=3:6,又a:b=2:3,所以a:b:c=2:3:6.且a+b+c=66,根据a、b、c的比求出a占66的几分之几之后,就能求出a为多少.
【解答】解:a:b=2:3,
b:c=1:2=(1×3):(2×3)=3:6,
a:b:c=2:3:6,
66×22+3+6=12.
故答案为:12.
【点评】本题关键是根据比的基本性质以b为中介求出a、b、c三者的比是多少.
三.判断题(共10小题)
31.【答案】见试题解答内容
【分析】已知a÷b=35,如果a是3,则b是5,如果a是6,则b是10;由于a不是定值,所以b也不是定值,一个数变化,另一个数也随之变化;由此判断即可
【解答】解:a÷b=35,如果a是3,则b是5,如果a是6,则b是10;由于a不是定值,所以b也不是定值;
故答案为:×.
【点评】明确a不是定值,所以b也不是定值,一个数变化,另一个数也随之变化,是解答此题的关键.
32.【答案】√
【分析】根据x+2y﹣1=3,可得x+2y=4,转换算式2x+4y+1=2(x+2y)+1,代入x+2y的值,可求出2x+4y+1的值,判断题干中的得数是否正确。
【解答】解:x+2y﹣1+1=3+1,根据等式的性质,两边同时加1,可得x+2y=4,
2x+4y+1=2(x+2y)+1
因为 x+2y=4,所以2(x+2y)+1=9
故答案为:√
【点评】此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值。
33.【答案】见试题解答内容
【分析】根据“a的12等于b的13”,可得等式a×12=b×13,再逆用比例的性质把等式转化成比例式为b:a=12:13=3:2,进而根据比与除法的关系,得出b是a的32;据此进行判断.
【解答】解:因为a×12=b×13,
所以b:a=12:13=3:2,
所以b:a=b÷a=3÷2=32,
因此b是a的32;
故判断为:×.
【点评】解决此题关键是把等式转化成比例式,进而根据比与除法的关系解答.
34.【答案】见试题解答内容
【分析】方程就是等式,但是等式不一定是方程,因为必须是含有未知数的等式才是方程.
【解答】解:方程就是等式,此话对;但等式也是方程,就不对,因为等式中不一定有未知数;
比如:2+3=5,是等式,但不是方程.
故判断为:错误.
【点评】此题考查对方程的意义的理解,必须是含有未知数的等式才是方程.
35.【答案】见试题解答内容
【分析】根据等式和方程的意义直接判断即可.
【解答】解:方程是指含有未知数的等式,所以所有的方程都是等式是正确的;
等式是指是用等号连接的式子,所以所有的等式也是方程是错误的;
从而确定:因为方程是等式,所以等式也是方程,此话是错误的.
故答案为:×.
【点评】此题考查方程与等式的关系:等式包含方程,方程只是等式的一部分.
36.【答案】见试题解答内容
【分析】方程是指含有未知数的等式,而等式是指等号两边相等的式子;所以所有的方程都是等式是正确的,但是所有的等式也一定是方程,就是错误的,举例验证即可进行判断.
【解答】解:所有的方程都是等式,此句正确;
但所有的等式就不一定是方程,如:5×10=25×2,只是等式,不是方程,因为只有含未知数的等式才是方程.
故答案为:×.
【点评】此题考查方程与等式的关系:所有的方程都是等式,但等式不一定是方程,只有含未知数的等式才是方程.
37.【答案】×
【分析】根据等式的性质,两边同时除以2,求出方程2x=0的解即可。
【解答】解:2x=0
2x÷2=0÷2
x=0
所以方程2x=0的解是x=0,
所以题中说法不正确。
故答案为:×。
【点评】此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘或同时除以一个数(0除外),两边仍相等。
38.【答案】×
【分析】使方程两边左右相等的未知数的值叫做方程的解,而3.51是一个数,而不是x的值,因此说法错误.
【解答】解:3.51是一个数,而不是x的值;
所以,3.51是方程7x÷3=8.19的解是错误的.
故答案为:×.
【点评】考查了对方程的解的理解程度,是个经常出错的知识点.
39.【答案】见试题解答内容
【分析】由a与b互为倒数,知道ab=1,再逆用比例的基本性质作答,即在比例里,两个外项的积等于两个内项的积.
【解答】解:因为a与b互为倒数,所以ab=1,
又因为20a=bx,
所以ab=20x,即20x=1,
所以x=120,
故答案为:√.
【点评】本题主要考查了倒数的意义与比例的基本性质的灵活应用.
40.【答案】见试题解答内容
【分析】因a、b、x都是非0自然数,要判断a>b,是否正确,那么根据不等式的性质,解ax-1x>bx-1x这个不等式即可.
【解答】解:ax-1x>bx-1x,
ax-1x+1x>bx-1x+1x,
ax÷x>bx÷x,
a>b;
故答案为:√.
【点评】本题考查了学生利用不等式的性质解不等式的能力,注意本题中的a、b、x都是非0自然数.
四.计算题(共3小题)
41.【答案】见试题解答内容
【分析】(1)把字母前的数字相加即可.
(2)把字母前的数字相减即可.
(3)0.52表示两个0.5相乘,故等于0.5×0.5=0.25.
(4)按照整数乘整数计算,得10,因数里面有1位小数,将小数点往左移动一位,得1.
(5)把字母前的数字相加减即可.
(6)把字母前的数字相加减即可.
【解答】解:(1)8x+6x=14x
(2)6.5b﹣5.5b=b
(3)0.52=0.5×0.5=0.25
(4)0.5×2=1
(5)6x+3x﹣4x=5x
(6)3.6a+5.4a+a=10a
故答案为:14x;b;0.25;1;5x;10a.
【点评】解答考查的是用字母表示数和小数乘法计算:
①字母相同时,直接把前面的数相加减即可;
②小数乘整数,按照整数乘整数计算,因数里面有几位小数,就将小数点往左移动几位.
42.【答案】2.05,0.3。
【分析】①先计算左边,依据等式的性质,方程两边同时加60,再同时除以42求解;
②先计算左边,依据等式的性质,方程两边同时除以4求解。
【解答】解:①42x﹣0.6×100=26.1
42x﹣60+60=26.1+60
42x=86.1
42x÷42=86.1÷42
x=2.05
②10x﹣6x=1.2
4x=1.2
4x÷4=1.2÷4
x=0.3
【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐。
43.【答案】(1)x=23;(2)x=38;(3)x=9。
【分析】(1)根据等式的性质,两边同时乘32即可。
(2)首先根据等式的性质,两边同时减去34,然后两边再同时乘52即可。
(3)首先化简,然后根据等式的性质,两边同时乘4即可。
【解答】解:(1)23x=49
23x×32=49×32
x=23
(2)34+25x=910
34+25x-34=910-34
25x=320
25x×52=320×52
x=38
(3)34x-12x=94
14x=94
14x×4=94×4
x=9
【点评】此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘或同时除以一个数(0除外),两边仍相等。
五.应用题(共3小题)
44.【答案】见试题解答内容
【分析】(1)根据“总价=单价×数量”,由题意可短,笔记本单价×10=铅笔单价×15,根据等式的性质,两边都除以5就是笔记本单价×2=铅笔单价×3,即2本笔记本的钱数=3支铅笔的钱数,因此,用2本笔记本可以换3支铅笔.
(2)把小明所带的钱数看作单位“1”,根据“单价=总价÷数量”,笔记本的单价就是110,铅笔的单价就是115,每本笔记本比每支铅笔贵a元,根据分数除法的意义,小明带的钱数就是a÷(110-115)=30a(元).
【解答】解:(1)笔记本单价×10=铅笔单价×15
笔记本单价×10÷5=铅笔单价×15÷5
笔记本单价×2=铅笔单价×3
即即2本笔记本的钱数=3支铅笔的钱数
因此,用2本笔记本可以换3支铅笔
答:用2本笔记本可以换3支铅笔.
(2)设小明带的钱数为“1”
则笔记本的单价就是110,铅笔的单价就是115,每本笔记本比每支铅笔贵a元
小明带的钱数就是:
a÷(110-115)
=a÷130
=30a(元)
【点评】解答此题的关键一是总价、单价、数量之间关系的灵活运用;二是在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.
45.【答案】见试题解答内容
【分析】把这个数设为x,它的3倍就是3x,它的1.5倍就是1.5x,用3x+1.5x得到的数就是22.5,由此列出方程求解.
【解答】解:设这个数为x
3x+1.5x=22.5
4.5x=22.5
4.5x÷4.5=22.5÷4.5
x=5
答:这个数是5.
【点评】这类型的题目要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出方程求解.
46.【答案】见试题解答内容
【分析】根据题意,设这个数是x,x的7.2倍加上x的2.8倍,和是2.5,即7.2x+2.8x=2.5,然后再根据等式的性质进行解答.
【解答】解:设这个数是x,根据题意可得:
7.2x+2.8x=2.5
10x=2.5
10x÷10=2.5÷10
x=0.25
答:这个数是0.25.
【点评】根据题意,先弄清等量关系,然后再列方程进行解答.
声明:试题解析著作权属所有,未经书面同意,不得复制发布日期:2023/5/12 21:30:40;用户:鲁梓阳;邮箱:hfnxxx58@qq.com;学号:47467571
数学六年级下册数的运算优秀测试题: 这是一份数学六年级下册数的运算优秀测试题,共16页。试卷主要包含了5个最小的三位数的和是,两位数乘一位数的积最大是,被除数的末尾有0,商的末尾有0等内容,欢迎下载使用。
人教版六年级下册数的认识精品课时训练: 这是一份人教版六年级下册数的认识精品课时训练,共16页。
小学数学人教版六年级下册6 整理与复习1 数与代数式与方程精品课堂检测: 这是一份小学数学人教版六年级下册6 整理与复习1 数与代数式与方程精品课堂检测,共13页。试卷主要包含了下列各式中,是方程的是,下列各式不是方程的是等内容,欢迎下载使用。