北师大版五年级上册数学期末试卷7(含答案)
展开这是一份北师大版五年级上册数学期末试卷7(含答案),共14页。试卷主要包含了选择题,填空题,判断题,计算题,作图题,解答题等内容,欢迎下载使用。
北师大版小学数学五年级上册期末考试高频易错点满分汇编卷
一、选择题(每题2分,共16分)
1.如下图,在22.5÷18的竖式中,9表示( )。
A.9个一 B.9个0.1 C.9个0.01
2.2022年北京冬奥会吉祥物“冰墩墩”以熊猫为原型进行设计创作,将熊猫形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技特点。某工厂制作一个“冰墩墩”玩偶需要1.6平方米的布料,则37.8平方米这种布料最多可以做( )个这种“冰墩墩”玩偶。
A.21 B.23 C.24
3.下列图形中,对称轴最多的是( )。
A.B.C.
4.下面第( )组数中的前一个数是后一个数的因数。
A.8和20 B.9和18 C.9和15
5.在下图中,甲三角形的面积是15cm2,乙三角形的面积是( )cm2。
A.36 B.80 C.120
6.甲数是乙数的2倍(甲、乙两数都是大于0的自然数),甲乙两数的最大公因数是( )
A.2 B.甲数 C.乙数
7.成都金沙遗址是中国最重大的考古发现之一,博物馆占地面积约30( )。
A.平方千米 B.平方米 C.公顷
8.玩转盘游戏,转到红色区域笑笑得1分,转到黄色区域淘气得1分,转到绿色区域对方得1分,选( )转盘最公平。
A. B. C.
二、填空题(每题2分,共16分)
9.做一件上衣需要用布1.3米,25米最多可以做( )件上衣。
10.两个乘数的积是4.28,其中一个乘数是0.4,另一个乘数是( )。
11.把抽屉平拉出来是( )现象。
12.在2、7、8、11、17、21、24中,质数有( )个,合数有( )个。
13.如下图,平行四边形中阴影部分三角形面积是12平方厘米,底是6厘米,三角形这条底对应的高是( )厘米,空白部分面积是( )平方厘米。
14.一个分数的分子是6和10的最大公因数,分母是这两个数的最小公倍数,这个分数是( ),化成最简分数是( )。
15.在括号里填上合适的单位名称。
抚顺儿童公园(西公园)占地面积约5( ),沈抚改革创新示范区总面积约285( )。
16.一个盒子中放有蓝,红,白三种颜色的球,下面是明明从盒子里的摸球30次情况。(每次摸完放回),蓝球摸出3次,红球摸出18次,白球摸出9次。根据数据情况推测,盒子中( )可能最多,( )可能最少。
三、判断题(每题2分,共8分)
17.一个四位数的最高位是万位。( )
18.任意一个圆环都有无数条对称轴。 ( )
19.图中有三个直角三角形,且ab=cd.( )
20.足球比赛时,裁判用抛硬币来决定哪个队先开球是公平的.( )
四、计算题(每题6分,共18分)
21.(每小题2分,共6分)用竖式计算,带☆号的要验算。
①5.68÷1.6= ②25÷1.5≈(结果保留一位小数) ③☆78÷2.4=
22.(每小题2分,共6分)用你喜欢的方法计算。
7.25÷1.25÷8 (0.56+1.52)÷0.8 72.5-2.07÷23
23.(每小题3分,共6分)计算下面图形的面积。(单位:米)
五、作图题(每题6分,共12分)
24.(6分)以虚线为对称轴,画出下面图形的轴对称图形。
25.(6分)奇思和妙想用转盘玩数字游戏。如果指针指向2的倍数就是奇思获胜,如果指针指向5的倍数就是妙想获胜,请你在图上填上合适的数,使这个游戏对双方都公平。
六、解答题(共30分)
26.(6分)一批货物重16吨,一辆卡车每次运2.5吨,这辆卡车需要几次才能运完?
27.(6分)面包师要把28块面包用塑封袋进行包装,每个塑封袋装同样多,袋数大于1且小于28,共有几种包装方法?
28.(6分)奇思和妙想将2—9这8张扑克牌反扣在桌面上,请你设计一个对双方都公平的游戏规则。请把你的设计方案写在下面。
29.(6分)一块街头广告牌的形状是平行四边形,底是12.5m,高是6.5m。如果要给这块广告牌的一面刷上油漆,每平方米用油漆0.6kg,需要多少千克油漆?
30.(6分)如图是一面墙,中间有一个长2米,宽1.5米的窗户,如果砌这面墙平均每平方米用砖100块,一共用砖多少块?
参考答案
1.B
【分析】一个数在哪个数位上,就表示这个数位上有几个这样的计数单位,题中余数9在十分位上,就表示9个十分之一。
【详解】在22.5÷18的竖式中,9表示9个0.1。
故答案为:B
【点睛】解答本题关键是熟练掌握小数除法的计算法则。
2.B
【分析】分析题目,求最多可以做多少个玩偶,就是求37.8里面有多少个1.6,据此结合除法的意义列式计算,注意:结果用去尾法保留整数。
【详解】37.8÷1.6≈23(个)
故答案为:B
【点睛】明确结果需要用去尾法保留整数是解答本题的关键。
3.C
【分析】根据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴;由此解答即可。
【详解】A.有3条对称轴;
B.有1条对称轴;
C.有12条对称轴。
故答案为:C
【点睛】本题主要考查对称轴的条数及位置。
4.B
【分析】分析题目,a÷b=c(a、b、c是自然数且均不为0),则我们就说a是b和c的倍数,b和c是a的因数,据此解答。
【详解】A.20÷8=2……4,20不能被8整除,所以8不是20的因数;
B.18÷9=2,18能被9整除,所以9是18的因数;
C.15÷9=1……6,15不能被9整除,所以9不是15的因数;
故答案为:B
【点睛】掌握因数的概念及特征是解答本题的关键。
5.A
【分析】根据三角形面积公式:面积=底×高÷2,高=三角形面积×2÷底,代入数据,求出甲三角形的高,甲三角形的高等于乙三角形的高,底已知,高已知,代入三角形面积公式,即可解答。
【详解】15×2÷5
=30÷5
=6(cm)
12×6÷2
=72÷2
=36(cm2)
在下图中,甲三角形的面积是15cm2,乙三角形的面积是36cm2。
故答案为:A
【点睛】熟练掌握和灵活运用三角形面积公式是解答本题的关键。
6.C
【详解】因为甲数是乙数的2倍(a和b均为非0自然数),当两个数成倍数关系时,较大的那个数,是这两个数的最小公倍数,较小的那个数,是这两个数的最大公约数,所以甲、乙两数的最大公因数是乙数.
故选C.
7.C
【分析】根据实际情况选择合适的单位即可,30平方米较小,30平方千米太大,故选择公顷较合适。
【详解】根据分析可知,成都金沙遗址博物馆占地面积约30公顷。
故答案为:C
【点睛】此题主要考查学生对面积单位的认识与选择。
8.C
【分析】根据题意,要想使游戏规则公平,指针停在红色区域和黄色区域的可能性应该一样,剩下的部分为绿色区域,据此逐项分析,找出转盘中,指针停在红色区域和黄色区域相同的转盘,进行解答。
【详解】A.,观察图形,指针停在红色区域和停在黄色区域的可能性不一样,转盘不公平,不符合题意;
B.,观察图形,指针停在黄色区域和绿色区域的可能性相同,转盘不公平,不符合题意;
C.,指针停在红色区域和黄色区域的可能性相同,转盘公平,符合题意;
故答案为:C
【点睛】本题考查游戏的公平性,关键明确指针停在哪两个区域的可能性相同,才能公平。
9.19
【分析】根据除法的意义,用布的总长度除以做一件上衣需要的布的米数即可得到可以做多少件上衣,注意用“去尾法”取值。
【详解】25÷1.3≈19(件)
25米最多可以做19件上衣。
【点睛】熟练掌握“去尾法”的应用是解答本题的关键。
10.10.7
【分析】根据另一个乘数=积÷一个乘数,代入数值求解即可。
【详解】4.28÷0.4=10.7
【点睛】本题考查小数除法的应用,根据另一个乘数=积÷一个乘数求解。
11.平移
【分析】把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移;据此解答。
【详解】由分析可知,把抽屉平拉出来是平移现象。
【点睛】本题主要考查平移现象,在实际当中的运用。
12. 4 3
【分析】在自然数中,除了1和它本身外,没有别的因数的数为质数;在自然数中,除了1和它本身外,还有别的因数的数为合数,据此解答。
【详解】2、7、8、11、17、21、24中,质数有:2、7、11、17一共4个;
合数有:8、21、24一共3个。
在2、7、8、11、17、21、24中,质数有4个,合数有3个。
【点睛】根据质数、合数的意义进行解答。
13. 4 12
【分析】三角形的面积=底×高÷2,据此用面积乘2再除以底,即可求出三角形的高,也是平行四边形的高。平行四边形的面积=底×高,代入数据求出平行四边形的面积,再减去阴影部分三角形的面积即可求出空白部分的面积。
【详解】12×2÷6=4(厘米)
6×4-12
=24-12
=12(平方厘米)
则三角形这条底对应的高是4厘米,空白部分面积是12平方厘米。
【点睛】本题考查三角形和平行四边形的面积公式。灵活运用三角形的面积公式求出三角形的高是解题的关键。
14.
【分析】先把要求的两个数分别分解质因数,然后把它们公有的质因数连乘起来,所得的积就是它们的最大公因数,把它们公有的质因数和独有的质因数连乘起来,所得的积就是它们的最小公倍数;据此求出这个分数的分子和分母,再根据分数的基本性质把分数化成最简分数即可。
【详解】因为:6=2×3,10=2×5,则6和10的最大公因数2,最小公倍数是2×3×5=30,即分子是2,分母是30;
所以:一个分数的分子是6和10的最大公因数,分母是这两个数的最小公倍数,这个分数是,化成最简分数是。
【点睛】熟练掌握求两个数最大公因数和最小公倍数的方法以及分数的基本性质是解题的关键。
15. 公顷 平方千米##km2
【分析】联系生活实际,结合数据的大小选择合适的计量单位。
【详解】抚顺儿童公园(西公园)占地面积约5公顷,沈抚改革创新示范区总面积约285平方千米。
【点睛】根据情景选择计量单位,本题主要考查学生对生活常识的掌握。
16. 红球 蓝球
【分析】从盒子里的摸球30次,其中摸到红球的次数最多,是18次,即可能性最大;
摸到蓝球的次数最少,是3次,即可能性最小;据此解答即可。
【详解】由分析得:
18>9>3
盒子中红球可能最多,蓝球可能最少。
【点睛】可能性的大小与事件的基本条件和发展过程等许多因素有关。当条件对事件的发生有利时,发生的可能性就大一些。当条件对事件的发生不利时,发生的可能性就小一些。
17.×
18.√
19.√
20.√
【详解】试题分析:因为抛硬币只会出现正反两面,掷出正反两面的可能性都是:1÷2= ;所以,用抛硬币的方式决定哪个队先开球是公平的.
解答:解:掷出正反两面的可能性都是:1÷2=;
所以,用抛硬币的方式决定哪个队先开球是公平的.
故答案为√.
点评:看游戏规则是否公平,主要看双方是否具有均等的机会,如果机会是均等的,那就公平,反之,则不公平.
21.3.55;16.7;32.5
【分析】计算除数是小数的除法,先移动除数的小数点,使它变成整数。除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补“0”),然后按照除数是整数的除法进行计算。小数除法验算时,根据乘法和除法互为逆运算的关系,把除数和商相乘,如果乘得的积与被除数相同,那么原计算正确。
商保留几位小数,就算到它的下一位。
【详解】①5.68÷1.6=3.55 ②25÷1.5≈16.7 ③☆78÷2.4=32.5
验算:
22.0.725;2.6;72.41
【分析】7.25÷1.25÷8,根据除法性质,原式化为:7.25÷(1.25×8),再进行计算;
(0.56+1.52)÷0.8,先计算括号里的加法,再计算括号外的除法;
72.5-2.07÷23,先计算除法,再计算减法。
【详解】7.25÷1.25÷8
=7.25÷(1.25×8)
=7.25÷10
=0.725
(0.56+1.52)÷0.8
=2.08÷0.8
=2.6
72.5-2.07÷23
=72.5-0.09
=72.41
23.10.465平方米;30平方米
【分析】根据梯形的面积公式:(上底+下底)×高÷2,三角形的面积公式:底×高÷2,把数代入即可求解。
【详解】梯形面积:(3.4+5.7)×2.3÷2
=9.1×2.3÷2
=20.93÷2
=10.465(平方米)
三角形面积:10×6÷2
=60÷2
=30(平方米)
24.见详解
【分析】找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
【详解】作图如下:
【点睛】本题是考查作轴对称图形,解题的关键是画对称点。
25.见详解
【分析】要使这个游戏对奇思和妙想都公平,那么2的倍数所占区域就要和5的倍数所占区域相同,由图可以看出每个扇形的面积相同,分别把它们平均分开,填写数字即可。
【详解】2的倍数可填2、4、6、8;
5的倍数可填5、15、25、35。
(答案不唯一)。
【点睛】本题考查游戏的公平性,要使游戏公平,就要使2的倍数和5的倍数出现的可能性一样大,它们所占的区域就要一样大。
26.7次
【分析】要求需要几次才能运完,也就是求16吨里面有几个2.5吨,用除法计算。
【详解】16÷2.5=6(次)……1(吨)
6+1=7(次)
答:这辆卡车需要7次才能运完。
【点睛】此题考查有余数的除法应用题,要注意:根据实际情况具体分析,采用“进一法”求近似值。
27.4种
【分析】面包师要把28块面包用塑封袋进行包装,每个塑封袋装同样多,袋数大于1且小于28,求共有几种包装方法,就是求28的因数,但不包括1和28本身,据此解答。
【详解】因为28的因数有:1,28,2,14,4,7,
所以每袋2块,装14袋;
每袋14块;装2袋;
每袋4块,装7袋;
每袋7块,装4袋。
共有4种包装方法。
答:共有4种包装方法。
【点睛】解答关键是求出28的因数,具体运用时不包括1和28 本身。
28.摸到奇数奇思赢,摸到偶数妙想赢。
【分析】先来观察这8个数字,分别是2、3、4、5、6、7、8、9,如果从奇偶数的角度分析,恰好是奇数、偶数各占一半,所以可据此来设计一个对双方都公平的游戏规则。
【详解】依据8张卡片的具体特征,以及游戏规则公平的原则可得:
摸到奇数奇思赢,摸到偶数妙想赢。
【点睛】本题答案不唯一,还有更复杂的游戏规则。但是都是使规则中每个人摸到的卡片张数相等,才能保证每个人赢得游戏的可能性相等。
29.48.75千克
【分析】先根据平行四边形的面积=底×高,求出这个平行四边形的面积,再乘每平方米需要油漆的重量即可。
【详解】12.5×6.5×0.6
=81.25×0.6
=48.75(千克)
答:需要48.75千克油漆。
【点睛】本题考查平行四边形面积公式的应用,关键是熟记公式。
30.3760块
【分析】观察图形可知,这面墙是一个组合图形,用三角形的面积与长方形的面积之和,再减去长方形窗户的面积即可求出墙的面积。三角形的面积=底×高÷2,长方形的面积=长×宽,据此代入数据计算。最后用每平方米用砖的块数乘墙的面积即可求出一共用砖多少块。
【详解】5×7+7×1.6÷2-2×1.5
=35+5.6-3
=37.6(平方米)
37.6×100=3760(块)
答:一共用砖3760块。
【点睛】本题主要考查组合图形面积的应用。熟练运用三角形和长方形的面积公式是解题的关键。
相关试卷
这是一份期末试卷(试题)-五年级上册数学北师大版,共2页。试卷主要包含了===,在 里填上合适的数,在 里填上“>”等内容,欢迎下载使用。
这是一份期末试卷(试题)-五年级上册数学北师大版,共4页。试卷主要包含了填空题,选择题,计算题,画图题,解决问题等内容,欢迎下载使用。
这是一份期末试卷(试题)-五年级上册数学北师大版,共4页。试卷主要包含了填空题,选择题,画图题,解决问题等内容,欢迎下载使用。