终身会员
搜索
    上传资料 赚现金

    信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析)

    立即下载
    加入资料篮
    信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析)第1页
    信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析)第2页
    信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析)第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析)

    展开

    这是一份信息必刷卷01(乙卷文科)-2023年高考数学考前信息必刷卷(Word版附解析),共17页。试卷主要包含了01),并推断它们的相关程度;等内容,欢迎下载使用。


    绝密启用前

    2023年高考数学考前信息必刷卷01

    全国乙卷地区专用

    文科数学

    新课标全国卷乙卷试题结构为12道单选题,4道填空题,6道解答题,其中一道解答题是“二选一”型。其中解答题是4道“基础型”,2道“压轴型”,随着新高考的推进,新课标全国乙卷地区也逐渐过渡到新高考试卷,所以这几年新课标全国卷试题出题也逐渐有新高考的特色,其中一点就是反映在“基础大题”的考察难易变化上。

    基础大题主要考察数列,三角函数与解三角形,概率分布列,立体几何这几个方面。全国卷这几年的难易变化体现在这样几方面:

    1.两个压轴大题,逐渐把圆锥曲线替换最后的导数压轴大题,放到21提为值,作为最后的压轴大题,导数大题前移到20题位置,作为压轴大题的副压轴大题来考察。

    2..原来的基础大题三角、数列、立体几何、概率等试题考察的位置和试题顺序不再固定,而是根据考试范围和难易来打乱调整。

    3.基础大题试题考察难度,考察内容,更加灵活多变,尽可能打破“套路思维”,注重数学思维的考察。

    4.基础大题有些题由两问变为三问,分散难度,但是增加了数学思维的广度。如本卷第19题。

     

     

    2022年新课标全国卷乙卷试卷试题,把概率统计大题放到第19题位置,21年是概率统计在17题位置,和21年相比较,试题由两问变成3问,并且此题文理题几乎一致,试题考察的数学知识覆盖面更广,试题考察背景紧密结合社会生产生活,试题考察社会环保治理与发展的相互关系,虽然是基础大题,但是涉及到的数学建模数学应用。预测2023年新课标全国乙卷仍将继续这种“变新”。所以作为基础大题,每一种类型题,更要注重数学思维和社会实践相结合的考察,同时更要注意随着新高考的推广,今年作为新课标全国卷老教材的考察卷,也会逐渐体现出“文理一致”的“过渡性”。

    同时也要注意基础试题在知识交汇处的考察,考察的数学知识运用处理能力综合度较强,如本试卷的第7和第13题。第7题考察框图,但是数学能力与知识的考察却在椭圆的定义与几何性质运用方面,难度虽然不是压轴小题的难度,但数学知识点跨度大,数学思维思考面要求广,是复习备考和试卷模拟时要多注意多注重的考点之一。

     

    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.

    1.已知全集,集合,则    

    A B

    C D

    【答案】B

    【分析】化简A,由补集求得B,即可进行交集运算.

    【详解】由,得.

    ,所以

    故选:B.

    2.已知复数,则    

    A B C D

    【答案】A

    【分析】根据复数的乘法运算以及除法运算即可化简求解.

    【详解】由 ,所以

    故选:A

    3.下列四个函数中,最小正周期与其余三个函数不同的是(    

    A B

    C D

    【答案】C

    【分析】结合二倍角、辅助角及和差角公式对选项进行化简,再计算周期比较即可.

    【详解】对于选项A

    选项B

    对于选项C

    对于选项D,

    故选:C.

    4.若双曲线的渐近线与圆相切,则    

    A2 B C1 D

    【答案】D

    【分析】由题得,双曲线渐近线为,圆心为,半径为1,根据相切得即可解决.

    【详解】由题知,双曲线焦点在轴上,其中

    ,其中圆心为,半径为1

    所以渐近线为,其中一条为,即

    因为双曲线的渐近线与圆相切,

    所以,解得

    故选:D

    5.某校举办了迎新年知识竞赛,随机选取了100人的成绩整理后画出的频率分布直方图如下,则根据此频率分布直方图,下列结论不正确的是(    

    A.该校约有一半学生成绩高于70 B.该校不及格人数比例估计为25%

    C.估计该校学生成绩的中位数为70 D.估计该校学生的平均成绩超过了70

    【答案】D

    【分析】由频率分布直方图求得分数在的频率,然后确定分数高于70分的频率,低于60分的频率,从而可判断ABC,由频率分布直方图计算均值判断D

    【详解】由频率分布直方图知分数在的频率为,

    因此成绩高于70分的频率为A正确;

    不及格人数即分数低于60分的频率为B正确;

    由选项A的计算知C正确;

    平均成绩为D错误,

    故选:D

    6.设mn为实数,则的(    

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】A

    【分析】根据指数函数和对数函数单调性分别化简,根据充分条件和必要条件的定义判断两者关系.

    【详解】因为函数上的单调递增函数,又,所以,所以,又函数上单调递减,所以,所以的充分条件,因为函数上单调递减,又,所以,当为负数时,没有对数值,所以不是的必要条件,所以的充分不必要条件,A正确

    故选:A.

    7.某算法的程序框图如图所示,则执行该程序后输出的S等于(    

    A24 B26 C30 D32

    【答案】D

    【分析】确定函数表示椭圆的上半部分,表示椭圆上的点到一个焦点的距离,表示距离之和,画出图像计算得到答案.

    【详解】,即,表示椭圆的上半部分,

    焦点为表示椭圆上的点到一个焦点的距离,表示距离之和,

    如图所示:

    .

    故选:D

    8.如图,直线平面,垂足为,正四面体(所有棱长都相等的三棱锥)的棱长为2在平面内,是直线上的动点,当的距离最大时,该正四面体在平面上的射影面积为(    

    A B C D

    【答案】D

    【分析】由题意知点是以为直径的球面上的点,得到的距离为四面体上以为直径的球面上的点到的距离,最大距离为的公垂线半径.再由取得最大距离时,垂直平面,且平行平面求解.

    【详解】因为直线平面,垂足为,所以点是以为直径的球面上的点,

    所以的距离为四面体上以为直径的球面上的点到的距离,

    最大距离为到球心的距离半径,即的公垂线半径,如图所示:

    的中点的中点,连接,因为

    所以 ,

    所以的最大距离为,此时,,

    当取得最大距离时,垂直平面,且平行平面

    所以投影是以为底, 的距离投影,即为高的等腰三角形,其面积

    故选:D

    【点睛】关键点点睛:本题关键是明确的最大距离为为的公垂线球半径,由共线得到而得解.

    9.已知函数与直线交于两点,且线段长度的最小值为,若将函数的图象向左平移个单位后恰好关于原点对称,则的最大值为(    

    A B C D

    【答案】C

    【分析】确定函数的最小正周期,可求得,根据图像的平移变换可得平移后函数的解析式,结合函数的对称性可求出,依据,即可求得答案.

    【详解】由题意知,函数的最小正周期,,,

    所以,将函数的图象向左平移个单位长度,

    得到的图象,

    因为该图象关于原点对称,则 ,所以

    时,,不合题意,当时,

    ,所以当时,,当时,,不合题意,

    最大值为

    故选:C

    10.如图,在正三棱柱中,是棱的中点,在棱上,且,则异面直线所成角的余弦值是(    

    A B C D

    【答案】B

    【分析】取棱靠近点的三等分点,取棱的中点,取的中点,连接.证明,得是异面直线所成的角(或补角).设,用余弦定理计算出余弦值.

    【详解】取棱靠近点的三等分点,取棱的中点,取的中点,连接

    由已知,又,所以是平行四边形,

    同时可得中点,而中点,所以

    所以,则是异面直线所成的角(或补角).

    平面,则平面平面,则

    ,则,从而

    .在中,

    由余弦定理可得

    所以异面直线所成的角的余弦值为

    故选:B

     

    11.在中,已知DBC的中点,则线段AD长度的最大值为(    

    A1 B C D2

    【答案】C

    【分析】由余弦定理得到,再利用基本不等式得到,然后由求解.

    【详解】解:由余弦定理得

    ,即

    所以,当且仅当b=c时等号成立.

    因为,所以

    ,故选:C

    12.已知函数,若,则的最大值为(    

    A B

    C D

    【答案】D

    【分析】分析函数的单调性,设,可得出,构造函数,利用导数求出函数的最大值,即可得解.

    【详解】因为,则函数上单调递减,在上单调递增,

    不妨设,有,可得,有

    ,有,令,可得

    ,可得

    可得函数的增区间为,减区间为

    可得,故的最大值为.

    故选:D

    二、填空题:本题共4小题,每小题5分,共20

    13.已知是单位向量,,若向量与向量夹角,写出一个满足上述条件的向量______.

    【答案】(答案不唯一)

    【分析】设,取,根据平面向量数量积的定义和坐标表示可得,进而,即可求解.

    【详解】设,又向量的夹角

    不妨取,

    ,则

    时,,此时.答案为:.

    14.已知,将数列与数列的公共项从小到大排列得到新数列,则__________.

    【答案】

    【分析】分析可知是正奇数列,根据题意求得,然后利用裂项相消法可求得的值.

    【详解】因为数列是正奇数列,

    对于数列,当为奇数时,设,则为偶数;

    为偶数时,设,则为奇数,

    所以,,则

    因此,.

    故答案为:.

    15的内角所对的边分别为,且,则的面积为______

    【答案】

    【分析】利用三角恒等变换以及正弦定理化简可得出的值,结合角的取值范围可得出角的值,利用余弦定理可求得的值,再利用三角形的面积公式可求得结果.

    【详解】因为

    所以,

    因为,则,所以,

    由正弦定理可得

    因为,所以,,则,可得.

    由余弦定理可得

    因此,.

    故答案为:.

    16.已知椭圆的左右焦点为,过的直线交椭圆CPQ两点,若,且,则椭圆C的离心率为__________

    【答案】

    【分析】根据椭圆的定义,线段比例关系和余弦定理即可求解.

    【详解】

    因为

    所以

    所以

    所以

    在三角形中,

    在三角形中,

    以上两式相等整理得,故(舍去),

    ,故答案为:.

    三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第2223题为选考题,考生根据要求作答.

    1712如图所示,已知三棱台中,

    (1)求二面角的余弦值;

    (2)EF分别是棱的中点,若平面,求棱台的体积.

    【答案】(1)

    (2)

     

    【分析】(1)由二面角定义可得二面角的平面角为,结合垂直关系及余弦定理求其余弦值即可;

    2)将棱台补全为棱锥,利用垂直关系证明,进而得到相关线段垂直并求出线段的长度,根据求体积.

    【详解】(1)因为,所以二面角的平面角为

    因为,所以

    因为,所以

    因为

    所以,故二面角余弦值为

    2)因为是三棱台,所以直线共点,设其交点为O

    因为EF分别是棱的中点,所以直线经过点O

    因为,所以

    ,所以

    因为,所以

    因为平面平面,所以

    所以,故F的中点.

    三棱台的体积

    1812已知数列的前项的积记为,且满足.

    (1)证明:数列为等差数列;

    (2),求数列的前项和.

    【答案】(1)证明见解析

    (2)

     

    【分析】(1)将条件中的变为,然后整理即可证明;

    2)求出数列的通项公式,然后利用裂项相消法求和.

    【详解】(1)当时,

    ,即

    又当时,,得

    数列是以3为首项,2为公差的等差数列;

    2)由(1)得

    .

    1912移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现物超人的国家.右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为1~5

    (1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;

    (2)(i)假设变量x与变量Yn对观测数据为(x1y1)(x2y2)(xnyn),两个变量满足一元线性回归模型  (随机误差).请推导:当随机误差平方和Q取得最小值时,参数b的最小二乘估计.

    (ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.

    附:样本相关系数

    【答案】(1),这两个变量正线性相关,且相关程度很强.

    (2)i;(ii)经验回归方程;预测2024年移动物联网连接数23.04亿户.

     

    【分析】(1)根据相关系数计算,若两个变量正相关,若两个变量负相关,越接近于1说明线性相关越强.

    2(i)整理得,根据二次函数求最小值时的取值;

    (ii) 根据计算公式求得经验回归方程, 并代入可预测2024年移动物联网连接数.

    【详解】(1)由散点图可以看出样本点都集中在一条直线附近,由此推断两个变量线性相关.

    因为,

    所以 ,

    所以 ,

    所以这两个变量正线性相关,且相关程度很强.

    2(i)

    要使取得最小值,当且仅当.

    (ii) (i)

    所以y关于x的经验回归方程,又

    所以 时,则

    所以预测2024年移动物联网连接数23.04亿户.

    2012已知函数).

    (1),求fx)的极值.

    (2)时,设,若存在,求实数的取值范围.(为自然对数的底数,

    【答案】(1)极小值为3;极大值为4ln73

    (2)

     

    【分析】(1)利用导数判断单调性,求出极值即可;

    2)存在,使,转化为在区间,即可求解.

    【详解】(1的定义域为

    时,

    ,可得1x7,令f'(x)<0,可得0x1x7

    函数的单调减区间为(01),(7,+),单调增区间为(17

    x1时,函数取得极小值为3x7时,函数确定极大值为4ln73

    2,令

    ,则

    fx)在区间(0,+)上单调递减,

    时,fx)在上单调递减,

    fx)在上的最大值为

    ,令,得

    时,单调递减,

    时,gx)单调递增,

    上的最小值为

    由题意可知,解得

    实数a的取值范围为[14).

    2112如图,已知点是焦点为F的抛物线上一点,AB是抛物线C上异于P的两点,且直线PAPB的倾斜角互补,若直线PA的斜率为.

    (1)求抛物线方程;

    (2)证明:直线AB的斜率为定值并求出此定值;

    (3)令焦点F到直线AB的距离d,求的最大值.

    【答案】(1)

    (2)证明见解析,

    (3)

     

    【分析】(1)待定系数法求解抛物线方程;

    2)设出直线方程,联立后得到A点纵坐标,同理得到B点纵坐标,从而求出直线AB的斜率;

    3)在前两问基础上用斜率k表达出,换元后使用基本不等式求出最大值.

    【详解】(1)解:将点代入抛物线方程可得:

    所以抛物线

    2)证明:设

    与抛物线方程联立可得:

    因为直线PAPB的倾斜角互补,

    k可得:

    因此,

    .

    3)解:由(2)可知,

    因此

    到直线AB的距离

    所以

    ,得

    当且仅当时取等号.

    所以的最大值为.

     

     

    (二)选考题:共10分.请考生在第2223题中任选一题作答.如果多做,则按所做的第一题计分.

     

    22[选修4-4:坐标系与参数方程]10分)

    在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,若为曲线上的动点,将绕点顺时针旋转得到,动点的轨迹为曲线

    (1)求曲线的极坐标方程;

    (2)在极坐标系中,点,射线与曲线分别交于异于极点两点,求的面积.

    【答案】(1)

    (2)

     

    【分析】(1)假设曲线上的动点的极坐标为,设,即可得到,再由点在上即可求出的轨迹方程;

    2)首先求出及点到射线的距离,即可求出的面积.

    【详解】(1)解:假设曲线上的动点的极坐标为,设

    由题意,因为,所以

    所以曲线的极坐标方程为.

    2)解:由题意可得

    又因为到射线的距离

    所以.

     

     

     

    23[选修4-5:不等式选讲]10分)

    已知,求证:

    (1)

    (2).

    【答案】(1)证明见解析

    (2)证明见解析

     

    【分析】(1)利用三元基本不等式即可得证.

    2)利用基本不等式推得,再相加即可得证.

    【详解】(1)因为

    所以,即

    当且仅当,即时,等号成立,

    所以,即,故.

    2)因为

    因为,当且仅当,即取得等号,

    同理可得,当且仅当取得等号,

    同理可得,当且仅当取得等号,

    上面三式相加可得,即

    当且仅当,即时,等号成立,

    因为,所以

    所以.

     

     

     

    相关试卷

    信息必刷卷02(甲卷文科)-高考数学考前信息必刷卷(全国甲卷地区专用):

    这是一份信息必刷卷02(甲卷文科)-高考数学考前信息必刷卷(全国甲卷地区专用),文件包含信息必刷卷02甲卷文科解析版docx、信息必刷卷02甲卷文科原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    信息必刷卷03(乙卷理科)-2023年高考数学考前信息必刷卷(Word版附解析):

    这是一份信息必刷卷03(乙卷理科)-2023年高考数学考前信息必刷卷(Word版附解析),共18页。

    信息必刷卷03-2023年高考数学考前信息必刷卷(新高考地区专用)(Word版附解析):

    这是一份信息必刷卷03-2023年高考数学考前信息必刷卷(新高考地区专用)(Word版附解析),共20页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map