终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)

    立即下载
    加入资料篮
    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)第1页
    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)第2页
    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)

    展开

    这是一份专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共18页。
    专题19 全等三角形
    【考查题型】

    【知识要点】
    知识点1 全等三角形及其性质
    全等图形概念:能完全重合的两个图形叫做全等图形。
    全等图形的性质:①形状相同。②大小相等。③对应边相等、对应角相等。④周长、面积相等。
    全等三角形概念:能完全重合的两个三角形叫做全等三角形。
    【补充】两个三角形全等,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
    表示方法:全等用符号“≌”,读作“全等于”。书写三角形全等时,要注意对应顶点字母要写在对应位置上。
    全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。
    变换方式(常见):平移、翻折、旋转。
    全等三角形的性质:对应边相等,对应角相等。
    考查题型一 全等三角形的性质
    典例1.(2021·黑龙江哈尔滨·中考真题)如图,,点和点是对应顶点,点和点是对应顶点,过点作,垂足为点,若,则的度数为(    )
    A. B. C. D.
    变式1-1.(2020·山东淄博·中考真题)如图,若△ABC≌△ADE,则下列结论中一定成立的是(     )

    A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED
    变式1-2.(2022·江苏扬州·中考真题)如图,在中,,将以点为中心逆时针旋转得到,点在边上,交于点.下列结论:①;②平分;③,其中所有正确结论的序号是(    )

    A.①② B.②③ C.①③ D.①②③
    变式1-3.(2020·天津·中考真题)如图,在中,,将绕点C顺时针旋转得到,使点B的对应点E恰好落在边上,点A的对应点为D,延长交于点F,则下列结论一定正确的是(    )

    A. B. C. D.
    变式1-4.(2020·湖南怀化·中考真题)如图,在和中,,,,则________º.

    知识点2:全等三角形的判定(重点)

    一般三角形
    直角三角形
    判定
    边角边(SAS)、角边角(ASA)
    角角边(AAS)、边边边(SSS)
    具备一般三角形的判定方法
    斜边和一条直角边对应相等(HL)
    性质
    对应边相等,对应角相等、周长、面积相等
    对应中线相等,对应高相等,对应角平分线相等
    【备注】判定两个三角形全等必须有一组边对应相等。
    证题的思路(重点):

    考查题型二 利用SSS证明两个三角形全等
    典例2.(2021·黑龙江哈尔滨·中考真题)如图,,点和点是对应顶.(2021·江苏盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是(    )

    A. B. C. D.
    变式2-1.(2022·山西·中考真题)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且,连接EF交边AD于点G.过点A作,垂足为点M,交边CD于点N.若,,则线段AN的长为_________

    变式2-2.(2022·广西·中考真题)如图,在中,BD是它的一条对角线,

    (1)求证:;
    (2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
    (3)连接BE,若,求的度数.
    变式2-3.(2022·广西·中考真题)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=

    (1)求证:△ABC≌△CDA ;
    (2)求草坪造型的面积.
    变式2-4.(2022·黑龙江大庆·中考真题)如图,在四边形中,点E,C为对角线上的两点,.连接.

    (1)求证:四边形是平行四边形;
    (2)若,求证:.
    变式2-5.(2022·广西玉林·中考真题)问题情境:
    在数学探究活动中,老师给出了如图的图形及下面三个等式:①     ②     ③若以其中两个等式作为已知条件,能否得到余下一个等式成立?
    解决方案:探究与全等.

    问题解决:
    (1)当选择①②作为已知条件时,与全等吗?_____________(填“全等”或“不全等”),理由是_____________;
    (2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求的概率.
    变式2-6.(2022·内蒙古鄂尔多斯·中考真题)如图,以AB为直径的⊙O与△ABC的边BC相切于点B,且与AC边交于点D,点E为BC中点,连接DE、BD.

    (1)求证:DE是⊙O的切线;
    (2)若DE=5,cos∠ABD=,求OE的长.
    考查题型三 利用SAS证明两个三角形全等
    典例3.(2021·黑龙江哈尔滨·中考真题)如图,,点和点是对应顶.(2022·浙江金华·中考真题)如图,与相交于点O,,不添加辅助线,判定的依据是(    )

    A. B. C. D.
    变式3-1.(2022·重庆·中考真题)如图,在正方形中,对角线、相交于点O. E、F分别为、上一点,且,连接,,.若,则的度数为(    )

    A.50° B.55° C.65° D.70°
    变式3-2.(2022·江苏泰州·中考真题)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2,d3,则d1+d2+d3的最小值为(   )

    A. B. C. D.
    变式3-3(2021·江苏泰州·中考真题)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设,则 为(  )

    A.2α B.90°﹣α C.45°+α D.90°﹣α
    变式3-4.(2022·吉林·中考真题)如图,,.求证:.

    变式3-5.(2022·四川南充·中考真题)如图,在菱形中,点E,F分别在边上,,分别与交于点M,N.求证:

    (1).
    (2).
    变式3-6.(2022·新疆·中考真题)在中,点D,F分别为边AC,AB的中点.延长DF到点E,使,连接BE.

    (1)求证:;
    (2)求证:四边形BCDE是平行四边形.
    变式3-7.(2022·湖南株洲·中考真题)如图所示,点在四边形的边上,连接,并延长交的延长线于点,已知,.

    (1)求证:;
    (2)若,求证:四边形为平行四边形.
    变式3-8.(2022·湖北黄石·中考真题)如图,在和中,,,,且点D在线段上,连.

    (1)求证:;
    (2)若,求的度数.
    变式3-9.(2022·湖北黄石·中考真题)如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则______________,的最小值为______________.

    考查题型四 利用ASA证明两个三角形全等
    典例4.(2022·湖南湘西·中考真题)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是(  )

    A.24 B.22 C.20 D.18
    变式4-1.(2021·重庆·中考真题)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为(    )

    A.1 B. C.2 D.
    变式4-2.(2021·四川绵阳·中考真题)如图,在边长为3的正方形中,,,则的长是(    )

    A.1 B. C. D.2
    变式4-3.(2022·陕西·中考真题)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.

    变式4-4.(2022·四川乐山·中考真题)如图,B是线段AC的中点,,求证:.

    变式4-5.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.

    (1)求证:;
    (2)过点作,垂足为.若的周长为56,,求的面积.
    变式4-6.(2022·浙江丽水·中考真题)如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.
    (1)求证:;
    (2)若,求的长.
    变式4-7.(2022·云南·中考真题)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°

    (1)求证:四边形ABDF是矩形;
    (2)若AD=5,DF=3,求四边形ABCF的面积S.
    变式4-8(2022·贵州贵阳·中考真题)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.

    (1)求证:;
    (2)若,,求的长.
    考查题型五 利用AAS证明两个三角形全等
    典例5.(2022·辽宁营口·中考真题)如图,在矩形中,点M在边上,把沿直线折叠,使点B落在边上的点E处,连接,过点B作,垂足为F,若,则线段的长为(    )

    A. B. C. D.
    变式5-1.(2022·四川宜宾·中考真题)如图,在矩形纸片ABCD中,,,将沿BD折叠到位置,DE交AB于点F,则的值为(    )

    A. B. C. D.
    变式5-2(2021·内蒙古呼和浩特·中考真题)在平面直角坐标系中,点,.以为一边在第一象限作正方形,则对角线所在直线的解析式为(   )
    A. B. C. D.
    变式5-3.(2022·广西贺州·中考真题)如图,在平面直角坐标系中,为等腰三角形,,点B到x轴的距离为4,若将绕点O逆时针旋转,得到,则点的坐标为__________.

    变式5-4.(2022·贵州毕节·中考真题)如图,在平面直角坐标系中,正方形的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数的图像经过点C,E.若点,则k的值是_________.

    变式5-5.(2022·贵州铜仁·中考真题)如图,点C在上,.求证:.

    变式5-6.(2022·湖南怀化·中考真题)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.

    (1)求证:MP=NP;
    (2)若AB=a,求线段PH的长(结果用含a的代数式表示).
    变式5-7.(2022·江苏苏州·中考真题)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.

    (1)求证:;
    (2)若,求的度数.
    变式5-8.(2022·湖南长沙·中考真题)如图,AC平分,垂足分别为B,D.

    (1)求证:;
    (2)若,求四边形ABCD的面积.
    变式5-9.(2022·重庆·中考真题)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为.想法是:以为边作矩形,点A在边上,再过点A作的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作的垂线交于点D.(只保留作图痕迹)

    在和中,
    ∵,
    ∴.
    ∵,
    ∴______①____.
    ∵,
    ∴______②_____.
    又∵____③______.
    ∴().
    同理可得:_____④______.

    变式5-10.(2022·浙江温州·中考真题)如图,在中,于点D,E,F分别是的中点,O是的中点,的延长线交线段于点G,连结,,.

    (1)求证:四边形是平行四边形.
    (2)当,时,求的长.
    考查题型六 利用HL证明两个三角形全等
    典例6.(2022·天津·中考真题)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是(    )

    A. B. C. D.
    变式6-1.(2022·湖北恩施·中考真题)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是(    )

    A.当时,四边形ABMP为矩形
    B.当时,四边形CDPM为平行四边形
    C.当时,
    D.当时,或6s
    变式6-2.(2022·山东泰安·中考真题)如图,四边形为正方形,点E是的中点,将正方形沿折叠,得到点B的对应点为点F,延长交线段于点P,若,则的长度为___________.

    变式6-3.(2022·湖北随州·中考真题)如图,在平行四边形ABCD中,点E,F分别在边AB,CD上,且四边形BEDF为正方形.

    (1)求证;
    (2)已知平行四边形ABCD的面积为,.求的长.
    变式6-4.(2022·贵州遵义·中考真题)将正方形和菱形按照如图所示摆放,顶点与顶点重合,菱形的对角线经过点,点,分别在,上.

    (1)求证:;
    (2)若,求的长.
    考查题型七 全等三角形综合问题
    典例7(2022·湖南常德·中考真题)如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是(    )

    A. B.,
    C. D.
    变式7-1.(2022·黑龙江·中考真题)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①;②;③;④若,则;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是(    )

    A.①②④⑤ B.①②③⑤ C.①②③④ D.①③④⑤
    变式7-2.(2022·内蒙古呼和浩特·中考真题)以下命题:①面包店某种面包售价元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了元;②等边三角形中,是边上一点,是边上一点,若,则;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有(    )
    A.1个 B.2个 C.3个 D.4个
    变式7-3.(2021·山东泰安·中考真题)如图,在平行四边形中,E是的中点,则下列四个结论:①;②若,,则;③若,则;④若,则与全等.其中正确结论的个数为(   )

    A.1个 B.2个 C.3个 D.4个
    变式7-4.(2021·广西河池·中考真题)如图,在边长为4的正方形ABCD中,点E,F分别在CD,AC上,,,则AF的长是(   )

    A. B. C. D.
    知识点3 角平分线的性质
    角平分线的性质定理:角平分线上的点到角两边的距离相等。
    几何描述:∵点P在∠AOB的平分线上,且PD⊥OA,PE⊥OB,垂足分别为点D,E,
    ∴PD=PE。

    角平分线的判定定理:角的内部到角两边距离相等的点在角的平分线上.
    几何描述:∵PD⊥OA,PE⊥OB,且PD=PE,
    ∴ 点P在∠AOB的平分线上。
    考查题型八 角平分线的性质
    典例8.(2022·四川资阳·中考真题)如图所示,在中,按下列步骤作图:
    第一步:在上分别截取,使;
    第二步:分别以点D和点E为圆心、适当长(大于的一半)为半径作圆弧,两弧交于点F;
    第三步:作射线交于点M;
    第四步:过点M作于点N.
    下列结论一定成立的是(   )

    A. B.
    C. D.
    变式8-1.(2022·内蒙古鄂尔多斯·中考真题)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为(  )

    A.2 B.2 C.4 D.4+2
    变式8-2.(2022·广西梧州·中考真题)如图,在中,是的角平分线,过点D分别作,垂足分别是点E,F,则下列结论错误的是(    )

    A. B. C. D.
    变式8-3.(2022·四川南充·中考真题)如图,在中,的平分线交于点D,DE//AB,交于点E,于点F,,则下列结论错误的是(    )

    A. B. C. D.
    变式8-4.(2022·湖南郴州·中考真题)如图.在中,,.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于长为半径作弧,在内两弧相交于点P;作射线AP交BC于点F,过点F作,垂足用G.若,则的周长等于________cm.

    变式8-5.(2022·湖南株洲·中考真题)如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.

    变式8-6.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.

    (1)求证:;
    (2)过点作,垂足为.若的周长为56,,求的面积.
    考查题型九 角平分线的判定
    典例9.(2020·湖北鄂州·中考真题)如图,在和中,,,,.连接、交于点,连接.下列结论:

    ①;②;③平分;④平分
    其中正确的结论个数有(    )个.
    A.4 B.3 C.2 D.1
    变式9-1.(2021·青海·中考真题)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为( )

    A.7.5 B.8 C.15 D.无法确定
    变式9-2.(2020·湖北省直辖县级单位·中考真题)如图,已知和都是等腰三角形,,交于点F,连接,下列结论:①;②;③平分;④.其中正确结论的个数有(    )

    A.1个 B.2个 C.3个 D.4个


    相关试卷

    专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(原卷版):

    这是一份专题21 勾股定理-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共10页。

    专题20 蚂蚁爬行模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版):

    这是一份专题20 蚂蚁爬行模型-2023年中考数学一轮复习热点题型与方法精准突破(原卷版),共11页。

    专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(解析版):

    这是一份专题19 全等三角形-2023年中考数学一轮复习热点题型与方法精准突破(解析版),共75页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map