所属成套资源:2023年中考数学真题汇编重组卷(广东专用)
真题重组卷03——2023年中考数学真题汇编重组卷(广东广州专用)
展开这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东广州专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
绝密★启用前
冲刺2023年中考数学精选真题重组卷03
数 学(广州专用)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(2018·广东广州·中考真题)四个数0,1,中,无理数的是( )
A. B.1 C. D.0
【答案】A
【分析】分别根据无理数、有理数的定义即可判定选择项.
【详解】0,1,是有理数,是无理数,
故选A.
【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2.(2020·广东广州·统考中考真题)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )
A.套餐一 B.套餐二 C.套餐三 D.套餐四
【答案】A
【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.
【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;
故选:A.
【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.
3.(2017·广东广州·中考真题)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )
A. B. C. D.
【答案】A
【详解】试题分析:顺时针90°后,AD转到AB边上,所以,选A.
考点:旋转的特征
4.(2022·青海·统考中考真题)下列运算正确的是( )
A. B.
C. D.
【答案】D
【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.
【详解】A.选项,3x2与4x3不是同类项,不能合并,故该选项计算错误,不符合题意;
B.选项,原式= ,故该选项计算错误,不符合题意;
C.选项,原式= ,故该选项计算错误,不符合题意;
D.选项,原式=,故该选项计算正确,符合题意;
故选:D.
【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.
5.(2022·广西河池·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )
A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC
【答案】C
【分析】根据菱形的性质逐项分析判断即可求解.
【详解】解:∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,∠DAC=∠BAC,故A、B、D选项正确,
不能得出,故C选项不正确,
故选:C.
【点睛】本题考查了菱形的性质,掌握菱形的性质是解题的关键.
6.(2022·内蒙古通辽·统考中考真题)若关于的分式方程:的解为正数,则的取值范围为( )
A. B.且
C. D.且
【答案】B
【分析】先解方程,含有k的代数式表示x,在根据x的取值范围确定k的取值范围.
【详解】解:∵,
∴,
解得:,
∵解为正数,
∴,
∴,
∵分母不能为0,
∴,
∴,解得,
综上所述:且,
故选:B.
【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.
7.(2022·广西河池·统考中考真题)如图,在Rt△ABC中,,,,将绕点B顺时针旋转90°得到.在此旋转过程中所扫过的面积为( )
A.25π+24 B.5π+24 C.25π D.5π
【答案】A
【分析】根据勾股定理定理求出AB,然后根据扇形的面积和三角形的面积公式求解.
【详解】解:∵,,,
∴,
∴所扫过的面积为.
故选:A.
【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.
8.(2020·广东广州·统考中考真题)如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( )
A. B. C. D.
【答案】C
【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明得到OE的长,再证明可得到EF的长,从而可得到结论.
【详解】∵四边形ABCD是矩形,
,
,
,
,,
,
,
,
又,
,
,
,
,,
,
同理可证,,
,
,
,
,
故选:C.
【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.
9.(2022·山东聊城·统考中考真题)如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是( )
A.30° B.25° C.20° D.10°
【答案】C
【分析】如图,连接OB,OD,AC,先求解,再求解,从而可得,再利用周角的含义可得,从而可得答案.
【详解】解:如图,连接OB,OD,AC,
∵,
∴,
∵,
∴,
∵,,
∴,,
∴,
∴,
∴.
∴的度数20°.
故选:C.
【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.
10.(2022·内蒙古通辽·统考中考真题)如图,点是内一点,与轴平行,与轴平行,,,,若反比例函数的图像经过,两点,则的值是( )
A. B. C. D.
【答案】C
【分析】过点C作CE⊥y轴于点E,延长BD交CE于点F,可证明△COE≌△ABE(AAS),则OE=BD=;由S△BDC=•BD•CF=可得CF=9,由∠BDC=120°,可知∠CDF=60°,所以DF=3,所以点D的纵坐标为4;设C(m,),D(m+9,4),则k=m=4(m+9),求出m的值即可求出k的值.
【详解】解:过点C作CE⊥y轴于点E,延长BD交CE于点F,
∵四边形OABC为平行四边形,
∴ABOC,AB=OC,
∴∠COE=∠ABD,
∵BDy轴,
∴∠ADB=90°,
∴△COE≌△ABD(AAS),
∴OE=BD=,
∵S△BDC=•BD•CF=,
∴CF=9,
∵∠BDC=120°,
∴∠CDF=60°,
∴DF=3.
∴点D的纵坐标为4,
设C(m,),D(m+9,4),
∵反比例函数y=(x<0)的图像经过C、D两点,
∴k=m=4(m+9),
∴m=-12,
∴k=-12.
故选:C.
【点睛】本题主要考查反比例函数与几何的综合问题,坐标与图形,全等三角形的判定与性质,设出关键点的坐标,并根据几何关系消去参数的值是本题解题关键.
二、 填空题(本大题共6小题,每小题4分,共24分)
11.(2020·广东广州·统考中考真题)计算:__________.
【答案】
【分析】先化简二次根式,再进行合并即可求出答案.
【详解】,
故答案为:.
【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.
12.(2017·广东广州·中考真题)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=______.
【答案】.
【详解】扇形的弧长和圆锥的底面周长相等,即:,解得:l=
考点: 圆锥的底面周长与侧面展开图的弧长关系.
13.(2018·广东广州·中考真题)方程的解是_____.
【答案】x=2.
【分析】本题考查解分式方程的能力,观察可得最简公分母是x(x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.
【详解】方程两边同乘以x(x+6),
得x+6=4x,
解得x=2.
经检验:x=2是原方程的解.
【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.
14.(2022·青海·统考中考真题)如图,在RtABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为_____________°.
【答案】40°
【分析】根据直角三角形的性质求得∠AEB=80°;根据线段垂直平分线的性质得AE=CE,则∠C=∠EAC,再根据三角形的外角的性质即可求解.
【详解】解:∵∠B=90°,∠BAE=10°,
∴∠BEA=80°.
∵ED是AC的垂直平分线,
∴AE=EC,
∴∠C=∠EAC.
∵∠BEA=∠C+∠EAC,
∴∠C=40°.
故答案为:40°.
【点睛】此题考查了线段垂直平分线的性质,涉及到三角形的外角的性质以及等腰三角形的性质的知识,难度适中.
15.(2022·广西河池·统考中考真题)如图,点P(x,y)在双曲线的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 _____.
【答案】
【分析】根据反比例函数比例系数的几何意义,即可求解.
【详解】解:根据题意得:,
∴,
∵图象位于第二象限内,
∴,
∴该反比例函数的解析式为.
故答案为:
【点睛】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
16.(2018·广东广州·中考真题)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有_____.(填写所有正确结论的序号)
【答案】①②④.
【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
【详解】∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴,
∴,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:3.故④正确.
故答案是:①②④.
【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)
17.(2017·广东广州·中考真题)解方程组:
【答案】.
【详解】试题分析:用加减消元法进行求解即可.
试题解析: ,
①×3,得:=15③,
③-②,得x=4,
把x=4代入①,得,4+y=5,∴y=1,
∴.
18.(2020·广东广州·统考中考真题)已知反比例函数的图象分别位于第二、第四象限,化简:.
【答案】5
【分析】由反比例函数图象的性质可得k<0,化简分式时注意去绝对值.
【详解】由题意得k<0.
【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.
19.(2018·广东广州·中考真题)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.
【答案】证明见解析.
【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.
【详解】在△AED和△CEB中,
,
∴△AED≌△CEB(SAS),
∴∠A=∠C(全等三角形对应角相等).
【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.
20.(2022·山东聊城·统考中考真题)如图,中,点D是AB上一点,点E是AC的中点,过点C作,交DE的延长线于点F.
(1)求证:;
(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.
【答案】(1)见解析
(2)当时,四边形ADCF是菱形,证明见解析
【分析】(1)由 得∠ADF=∠CFD,∠DAC=∠FCA,结合,可证,根据全等三角形的性质即求解;
(2)由,,易得四边形ADCF是平行四边形,若,点D是AB的中点,可得,即得四边形ADCF是菱形.
【详解】(1)证明:∵,
∴∠ADF=∠CFD,∠DAC=∠FCA.
∵点E是AC的中点,
∴AE=CE,
∴,
∴;
(2)解:当时,四边形ADCF是菱形.
证明如下:
由(1)知,,
∵,
∴四边形ADCF是平行四边形.
∵,
∴是直角三角形.
∵点D是AB的中点,
∴,
∴四边形ADCF是菱形.
【点睛】本题考查全等三角形的判定与性质及菱形的判定,解题的关键是掌握全等三角形判定定理及菱形的判定定理.
21.(2022·内蒙古通辽·统考中考真题)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:
甲:所有商品按原价8.5折出售;
乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.
设需要购买体育用品的原价总额为元,去甲商店购买实付元,去乙商店购买实付元,其函数图象如图所示.
(1)分别求,关于的函数关系式;
(2)两图象交于点,求点坐标;
(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.
【答案】(1)y甲=0.85x;y乙与x的函数关系式为y乙=
(2)(600,510)
(3)当x<600时,选择甲商店更合算;当x=600时,两家商店所需费用相同;当x>600时,选择乙商店更合算.
【分析】(1)根据题意,可以分别写出甲、乙两家商店y与x的函数关系式;
(2)根据(1)的结论列方程组解答即可;
(3)由点A的意义并结合图象解答即可.
【详解】(1)由题意可得,y甲=0.85x;
乙商店:当0≤x≤300时,y乙与x的函数关系式为y乙=x;
当x>300时,y乙=300+(x-300)×0.7=0.7x+90,
由上可得,y乙与x的函数关系式为y乙=
(2)由,解得,
点A的坐标为(600,510);
(3)由点A的意义,当买的体育商品标价为600元时,甲、乙商店优惠后所需费用相同,都是510元,
结合图象可知,
当x<600时,选择甲商店更合算;
当x=600时,两家商店所需费用相同;
当x>600时,选择乙商店更合算.
【点睛】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
22.(2018·广东广州·中考真题)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
【答案】(1)答案见解析;(2)①证明见解析;②.
【分析】(1)利用尺规作出∠ADC的角平分线即可;
(2)①延长DE交AB的延长线于F.只要证明AD=AF,DE=EF,利用等腰三角形三线合一的性质即可解决问题;②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.由MB=MK,推出MB+MN=KM+MN,根据垂线段最短可知:当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长.
【详解】(1)如图,∠ADC的平分线DE如图所示,
(2)延长DE交AB的延长线于F,
∵CD∥AF,
∴∠CDE=∠F,
∵∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∵AD=AB+CD=AB+BF,
∴CD=BF,
∵∠DEC=∠BEF,
∴△DEC≌△FEB,
∴DE=EF,
∵AD=AF,
∴AE⊥DE;
②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK,
∵AD=AF,DE=EF,
∴AE平分∠DAF,则△AEK≌△AEB,
∴AK=AB=4,
在Rt△ADG中,DG,
∵KH∥DG,
∴,
∴,
∴KH,
∵MB=MK,
∴MB+MN=KM+MN,
∴当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长,∴BM+MN的最小值为.
【点睛】本题考查作图-基本作图,轴对称最短问题,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.
23.(2020·广东广州·统考中考真题)如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接,,.
(1)求证:是的平分线;
(2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.
【答案】(1)详见解析;(2)是, ;(3)
【分析】(1)根据等弧对等角的性质证明即可;
(2)延长DA到E,让AE=DB,证明△EAC≌△DBC,即可表示出S的面积;
(3)作点D关于直线BC、AC的对称点D1、D2,当D1、M、N、D共线时△DMN取最小值,可得t=D1D2,有对称性推出在等腰△D1CD2中,t=,D与O、C共线时t取最大值即可算出.
【详解】(1)∵△ABC为等边三角形,BC=AC,
∴,都为圆,
∴∠AOC=∠BOC=120°,
∴∠ADC=∠BDC=60°,
∴DC是∠ADB的角平分线.
(2)是.
如图,延长DA至点E,使得AE=DB.
连接EC,则∠EAC=180°-∠DAC=∠DBC.
∵AE=DB,∠EAC=∠DBC,AC=BC,
∴△EAC≌△DBC(SAS),
∴∠E=∠CDB=∠ADC=60°,
故△EDC是等边三角形,
∵DC=x,∴根据等边三角形的特殊性可知DC边上的高为
∴.
(3)依次作点D关于直线BC、AC的对称点D1、D2,根据对称性
C△DMN=DM+MN+ND=D1M+MN+ND2.
∴D1、M、N、D共线时△DMN取最小值t,此时t=D1D2,
由对称有D1C=DC=D2C=x,∠D1CB=∠DCB,∠D2CA=∠DCA,
∴∠D1CD2=∠D1CB+∠BCA+∠D2CA=∠DCB+60°+∠DCA=120°.
∴∠CD1D2=∠CD2D1=60°,
在等腰△D1CD2中,作CH⊥D1D2,
则在Rt△D1CH中,根据30°特殊直角三角形的比例可得D1H=,
同理D2H=
∴t=D1D2=.
∴x取最大值时,t取最大值.
即D与O、C共线时t取最大值,x=4.
所有t值中的最大值为.
【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.
24.(2017·广东广州·中考真题)如图,矩形的对角线,相交于点,关于的对称图形为.
(1)求证:四边形是菱形;
(2)连接,若,.
①求的值;
②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.
【答案】(1)证明见解析;(2)① ;②和 走完全程所需时间为 .
【分析】(1)利用四边相等的四边形是菱形进行证明即可;
(2)①构造直角三角形求即可;
②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.
【详解】(1) 四边形 是矩形,
,
与 交于点O,且 关于 对称,
,
,
四边形 是菱形;
(2)①连接 ,直线 分别交 于点 ,交 于点 ,
关于 的对称图形为 ,
,
在矩形 中, 为 的中点,且O为AC的中点,
为 的中位线 , ,
同理可得: 为 的中点, ,
,
;
②过点P作 交 于点 ,
由 运动到 所需的时间为3s,
由①可得,,
点Q以 的速度从P到A所需的时间等于以 从M运动到A,
即:,
由O运动到P所需的时间就是OP+MA和最小.
如下图,当P运动到 ,即 时,所用时间最短.
,
在 中,设, ,
,
解得: , ,
和 走完全程所需时间为.
25.(2022·广西河池·统考中考真题)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1),抛物线顶点
(2)时,△BFE与△DEC的面积之和最小
(3)
【分析】(1)利用待定系数法求出a,b的值即可;
(2)如图1中,连接BC,过点C作CH⊥BD于点H.设抛物线的对称轴交x轴于点T.首先证明∠DCB=90°,利用面积法求出CH,构建二次函数,利用二次函数的性质即可解决问题;
(3)如图2中,由题意抛物线L2的对称轴x=5,M(6,-3).设P(5,m),分三种情形:当BP=BM时,当PB=PM时,当BM=PM时,分别构建方程求解即可.
(1)
解:∵y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3),
,
∴,
抛物线的解析式为;
由
抛物线顶点;
(2)
如图1中,连接BC,过点C作CH⊥ BD于点H.设抛物线的对称轴交x轴于点T.
,
,
,
,
,
,
轴, 轴,
,
,
,
,
与 的面积之和
,
S有最小值,最小值为,此时,
时,△BFE与△DEC的面积之和有最小值.
(3)
存在,如图2,
,,的对称轴为直线,
将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.
抛物线的对称轴为直线,
设 ,
当 时,
,
,
,
当 时,
,
解得, ,
,
当 时,
,
解得, ,
综上所述,满足条件的的坐标为 .
【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的性质,等腰三角形的判定和性质,中心对称变换等知识,解题的关键是学会根据二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
相关试卷
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(福建专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷福建专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷福建专用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东深圳专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷深圳专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷深圳专用原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东专用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。