所属成套资源:2023年中考数学真题汇编重组卷(广东专用)
真题重组卷03——2023年中考数学真题汇编重组卷(广东深圳专用)
展开这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东深圳专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷深圳专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷深圳专用原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
绝密★启用前
冲刺2023年中考数学精选真题重组卷03
数 学(深圳专用)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(2020·广东深圳·统考中考真题)下列图形中既是轴对称图形,也是中心对称图形的是( )
A. B. C. D.
2.(2022·海南·统考中考真题)为了加快构建清洁低碳、安全高效的能源体系,国家发布《关于促进新时代新能源高质量发展的实施方案》,旨在锚定到2030年我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标.数据1200000000用科学记数法表示为( )
A. B. C. D.
3.(2022·福建·统考中考真题)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,,BC=44cm,则高AD约为( )(参考数据:,,)
A.9.90cm B.11.22cm C.19.58cm D.22.44cm
4.(2022·黑龙江绥化·统考中考真题)下列命题中是假命题的是( )
A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半
B.如果两个角互为邻补角,那么这两个角一定相等
C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角
D.直角三角形斜边上的中线等于斜边的一半
5.(2022·四川雅安·统考中考真题)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )
A.3 B. C. D.3
6.(2020·广东深圳·统考中考真题)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
A. B.4ac-b2>0
C.3a+c=0 D.ax2+bx+c=n+1无实数根
7.(2022·黑龙江绥化·统考中考真题)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )
A.2.7分钟 B.2.8分钟 C.3分钟 D.3.2分钟
8.(2022·湖南长沙·统考中考真题)如图,在中,按以下步骤作图:
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
A.4 B.2 C. D.
9.(2022·海南·统考中考真题)如图,菱形中,点E是边的中点,垂直交的延长线于点F,若,则菱形的边长是( )
A.3 B.4 C.5 D.
10.(2022·黑龙江绥化·统考中考真题)如图,在矩形中,P是边上的一个动点,连接,,过点B作射线,交线段的延长线于点E,交边于点M,且使得,如果,,,,其中.则下列结论中,正确的个数为( )
(1)y与x的关系式为;(2)当时,;(3)当时,.
A.0个 B.1个 C.2个 D.3个
二、填空题(本大题共5小题,每小题3分,共15分)
11.(2022·四川雅安·统考中考真题)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为 _____.
12.(2022·黑龙江绥化·统考中考真题)设与为一元二次方程的两根,则的值为________.
13.(2022·湖南长沙·统考中考真题)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是___________(填写网名字母代号).
14.(2022·黑龙江齐齐哈尔·统考中考真题)如图,直线与轴相交于点,与轴相交于点,过点作交轴于点,过点作轴交于点,过点作交轴于点,过点作轴交于点…,按照如此规律操作下去,则点的纵坐标是______________.
15.(2020·广东深圳·统考中考真题)如图,已知四边形ABCD,AC与BD相交于点O,∠ABC=∠DAC=90°,,则=___.
三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤)
16.(2020·广东深圳·统考中考真题)计算:.
17.(2022·黑龙江绥化·统考中考真题)如图所示,为了测量百货大楼顶部广告牌的高度,在距离百货大楼30m的A处用仪器测得;向百货大楼的方向走10m,到达B处时,测得,仪器高度忽略不计,求广告牌的高度.(结果保留小数点后一位)
(参考数据:,,,)
18.(2022·四川雅安·统考中考真题)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.
(1)求证:△ABE≌△CDF;
(2)若AB=3,BE=2,求四边形AECF的面积.
19.(2022·福建·统考中考真题)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
20.(2022·黑龙江绥化·统考中考真题)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.
(1)求证:.
(2)若,,求的长.
(3)在点C运动过程中,当时,求的值.
21.(2022·四川雅安·统考中考真题)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).
(1)求此二次函数的表达式及图象顶点D的坐标;
(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;
(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.
22.(2022·山东临沂·统考中考真题)已知是等边三角形,点B,D关于直线AC对称,连接AD,CD.
(1)求证:四边形ABCD是菱形;
(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,的大小是否发生变化?说明理由.
(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.
23.(2022·黑龙江齐齐哈尔·统考中考真题)综合与探究
如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).
(1)求抛物线的解析式;
(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;
(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
相关试卷
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(福建专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷福建专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷福建专用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东广州专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东广州专用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(广东专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷广东专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷广东专用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。