所属成套资源:2023年中考数学真题汇编重组卷(浙江专用)
真题重组卷02——2023年中考数学真题汇编重组卷(浙江杭州专用)
展开
这是一份真题重组卷02——2023年中考数学真题汇编重组卷(浙江杭州专用),文件包含真题重组卷02-2023年中考数学真题汇编重组卷浙江杭州专用解析版docx、真题重组卷02-2023年中考数学真题汇编重组卷浙江杭州专用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
绝密★启用前
冲刺2023年中考数学精选真题重组卷02
数 学(浙江杭州专用)
(本卷共23小题,满分120分,考试用时100分钟)
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2022·山东滨州·统考中考真题)某市冬季中的一天,中午12时的气温是,经过6小时气温下降了,那么当天18时的气温是( )
A. B. C. D.
【答案】B
【分析】根据有理数减法计算即可.
【详解】解: ∵中午12时的气温是,经过6小时气温下降了,
∴当天18时的气温是.
故选B.
【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.
2.(2022·贵州黔西·统考中考真题)据央视6月初报道,电信5G技术赋能千行百业,打造数字经济底座.5G牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )
A. B. C. D.
【答案】C
【分析】先将4772亿元换算成477200000000元,再根据科学记数法可直接得到答案.
【详解】解:4772亿元=477200000000元=元
故选:C.
【点睛】本题考查科学记数法,解题的关键是熟练掌握科学记数法的方法,科学记数法的基本形式为,其中,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2022·辽宁鞍山·统考中考真题)如图,直线,等边三角形的顶点在直线上,,则的度数为( )
A. B. C. D.
【答案】A
【分析】先根据等边三角形的性质得到∠A=60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.
【详解】解:∵△ABC为等边三角形,
∴∠A=60°,
∵∠A+∠3+∠2=180°,
∴∠3=180°−40°−60°=80°,
∵,
∴∠1=∠3=80°.
故选:A.
【点睛】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平行线的性质.
4.(2022·内蒙古包头·中考真题)若,则下列不等式中正确的是( )
A. B. C. D.
【答案】D
【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
【详解】解:A、∵m>n,∴,故本选项不合题意;
B、∵m>n,∴,故本选项不合题意;
C、∵m>n,∴,故本选项不合题意;
D、∵m>n,∴,故本选项符合题意;
故选:D.
【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
5.(2022·浙江衢州·统考中考真题)线段首尾顺次相接组成三角形,若,则的长度可以是( )
A.3 B.4 C.5 D.6
【答案】A
【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边只差小于第三边,即可得出c的取值范围.
【详解】解:∵,
∴,
即:,
∴c的长度可能为3.
故选:A
【点睛】本题考查三角形的三边和关系,属于基础题,熟练掌握三角形三边关系,得出第三边的取值范围是解题的关键.
6.(2022·浙江舟山·中考真题)上学期某班的学生都是双人同桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x人,女生y人,根据题意可得方程组为( )
A. B. C. D.
【答案】A
【分析】设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意,列出方程组,即可求解.
【详解】解:设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意得:
.
故选:A
【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
7.(2022·广西·统考中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程( )
A. B. C. D.
【答案】D
【分析】设边衬的宽度为x米,则整幅图画宽为(1.4+2x)米, 整幅图画长为(2.4+2x)米,根据整幅图画宽与长的比是8:13,列出方程即可.
【详解】解:设边衬的宽度为x米,根据题意,得
,
故选:D.
【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.
8.(2022·山东威海·统考中考真题)如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN∥PQ,则点N的坐标可能是( )
A.(2,3) B.(3,3) C.(4,2) D.(5,1)
【答案】C
【分析】根据P,Q的坐标求得直线解析式,进而求得过点的解析式,即可求解.
【详解】解:∵P,Q的坐标分别为(0,2),(3,0),设直线的解析式为,
则,
解得,
直线的解析式为,
MN∥PQ,
设的解析式为,,
则,
解得,
的解析式为,
当时,,
当时,,
当时,,
当时,,
故选C
【点睛】本题考查了求一次函数解析式,一次函数平移问题,掌握以上知识是解题的关键.
9.(2022·四川资阳·中考真题)如图是二次函数的图象,其对称轴为直线,且过点.有以下四个结论:①,②,③,④若顶点坐标为,当时,y有最大值为2、最小值为,此时m的取值范围是.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】A
【分析】①:根据二次函数的对称轴,,即可判断出;
②:结合图象发现,当时,函数值大于1,代入即可判断;
③:结合图象发现,当时,函数值小于0,代入即可判断;
④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.
【详解】解:∵二次函数的图象,其对称轴为直线,且过点,
∴,,
∴,∴,故①正确;
从图中可以看出,当时,函数值大于1,因此将代入得,,即,故②正确;
∵,∴,从图中可以看出,当时,函数值小于0,
∴,∴,故③正确;
∵二次函数的顶点坐标为,
∴设二次函数的解析式为,将代入得,,
解得,
∴二次函数的解析式为,
∴当时,;
∴根据二次函数的对称性,得到,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
【点睛】本题考查了二次函数的图象和性质,待定系数法求二次函数解析式等,熟练掌握二次函数的图象和性质是本题的关键.
10.(2022·江苏镇江·统考中考真题)如图,在等腰中,,BC= ,同时与边的延长线、射线相切,的半径为3.将绕点按顺时针方向旋转,、的对应点分别为、,在旋转的过程中边所在直线与相切的次数为( )
A.1 B.2 C.3 D.4
【答案】C
【分析】首先以A为圆心,以BC边的中线为半径画圆,可得⊙A的半径为3,计算出OA的长度,可知⊙O与⊙A相切,根据两个相切圆的性质,即可得到答案.
【详解】解:如图:
作AD⊥BC,以A为圆心,以AD为半径画圆
∵AC、AB所在的直线与⊙O相切,令切点分别为P、Q,连接OP、OQ
∴AO平分∠PAQ
∵∠CAB=120°
∴∠PAO=30°
∵OP=3
∴AO= =6
∵∠BAC=120°,AB=AC
∴∠ACB=30°,CD= BC=
∴AD= =3
∴⊙A的半径为3,
∴⊙O与⊙A的半径和为6
∵AO=6
∴⊙O与⊙A相切
∵AD⊥BC
∴BC所在的直线是⊙A的切线
∴BC所在的直线与⊙O相切
∴当=360°时,BC所在的直线与⊙O相切
同理可证明当=180°时,所在的直线与⊙O相切.
当⊥AO时,即=90°时,所在的直线与⊙O相切.
∴当为90°、180°、360°时,BC所在的直线与⊙O相切
故答案选C.
【点睛】本题主要考查了圆的切线,涉及到等腰三角形的性质、两圆的位置关系和特殊角的三角函数等知识,熟练掌握相关知识,精准识图并准确推断图形的运动轨迹,进行合理论证是本题的解题关键.
二、填空题:本题共6小题,每小题4分,共24分。
11.(2022·江苏宿迁·统考中考真题)满足的最大整数是_______.
【答案】3
【分析】先判断从而可得答案.
【详解】解:
满足的最大整数是3.
故答案为:3.
【点睛】本题考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.
12.(2022·贵州六盘水·统考中考真题)将一副去掉大小王的扑克牌平均分发给甲、乙、丙、丁四人,已知甲有5张红桃牌,乙有4张红桃牌,那么丁的红桃牌有__________种不同的情况.
【答案】5
【分析】先求出红桃牌的总张数为13张,再减去甲、乙红桃牌的张数可得剩下的红桃牌的张数,由此即可得.
【详解】解:一副牌去掉大小王后剩下张牌,
则红桃牌的总张数为(张),
甲有5张红桃牌,乙有4张红桃牌,
剩下的红桃牌的张数为(张),
所以丁的红桃牌的张数的所有可能情况为:0张、1张、2张、3张、4张,共有5种不同的情况,
故答案为:5.
【点睛】本题考查了列举所有可能的结果,理解一副牌中红桃牌的总张数是解题关键.
13.(2022·青海西宁·统考中考真题)如图,直线y1=k1x与直线y2=k2x+b交于点A(1,2).当y10) ,y=(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.
(1)小莹认为不能选.你认同吗?请说明理由;
(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;
(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?
【答案】(1)认同,理由见解析
(2)①号田的函数关系式为y=0.5x+1(k>0);②号田的函数关系式为y=−0.1x2+x+1;
(3)在2023年或2024年总年产量最大,最大是7.6吨.
【分析】(1)根据年产量变化情况,以及反比例函数的性质即可判断;
(2)利用待定系数法求解即可;
(3)设总年产量为w,依题意得w=−0.1x2+x+1+0.5x+1,利用二次函数的性质即可求解.
【详解】(1)解:认同,理由如下:
观察①号田的年产量变化:每年增加0.5吨,呈一次函数关系;
观察②号田的年产量变化:经过点(1,1.9),(2,2.6),(3,3.1),
∵1×1.9=1.9,2×2.6=5.2,1.9≠5.2,
∴不是反比例函数关系,
小莹认为不能选是正确的;
(2)解:由(1)知①号田符合y=kx+b(k>0),
由题意得,
解得:,
∴①号田的函数关系式为y=0.5x+1(k>0);
检验,当x=4时,y=2+1=3,符合题意;
②号田符合y=−0.1x2+ax+c,
由题意得,
解得:,
∴②号田的函数关系式为y=−0.1x2+x+1;
检验,当x=4时,y=-1.6+4+1=3.4,符合题意;
(3)解:设总年产量为w,
依题意得:w=−0.1x2+x+1+0.5x+1=−0.1x2+1.5x+2
=−0.1(x2-15x+-)+2
=−0.1(x-7.5)2+7.625,
∵−0.1
相关试卷
这是一份真题重组卷04——2023年中考数学真题汇编重组卷(浙江杭州专用),文件包含真题重组卷04-2023年中考数学真题汇编重组卷浙江杭州专用解析版docx、真题重组卷04-2023年中考数学真题汇编重组卷浙江杭州专用原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份真题重组卷03——2023年中考数学真题汇编重组卷(浙江杭州专用),文件包含真题重组卷03-2023年中考数学真题汇编重组卷浙江杭州专用解析版docx、真题重组卷03-2023年中考数学真题汇编重组卷浙江杭州专用原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份真题重组卷01——2023年中考数学真题汇编重组卷(浙江杭州专用),文件包含真题重组卷01-2023年中考数学真题汇编重组卷浙江杭州专用解析版docx、真题重组卷01-2023年中考数学真题汇编重组卷浙江杭州专用原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。