2023年山东省济宁市泗水县中考二模数学试题(含答案)
展开
这是一份2023年山东省济宁市泗水县中考二模数学试题(含答案),共10页。试卷主要包含了选择题,开动脑筋,耐心填一填!,解答题等内容,欢迎下载使用。
泗水县初三第二次模拟考试数学试题(时间:120分钟)同学们,你们好!一转眼半个学期飞快地过去了.在这半个学期里,我们进行了系统的复习,也提高了我们的数学思维能力.现在让我们在这里展示一下自己的真实水平吧!祝大家成功!一、选择题(下列各题的四个选项中,只有一项符合题意,请把正确选项前的字母填在答题纸上)注意可以用各种不同的方法来解决你面前的选择题哦!1.下列四个数中,最小的是( )A.-1 B. C. D.2.由六个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.3.下面是一位同学做的四道题:①2a+3b=5ab;②;③;④其中做对的一道题的序号是( )A.① B.② C.③ D.④4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是90分,80分,则小明这学期的数学成绩是( )A.80分 B.87分 C.84分 D.88分5.已知、均为锐角,且满足,则( )A.45° B.60° C.75° D.105°6.为响应“足球进校园”的号召,某校组织足球比赛,赛制为单循环形式(每两个队之间都要比赛一场),计划安排28场比赛,则参赛的足球队个数为( )A.6 B.7 C.8 D.97.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为( )A.无法确定 B. C.1 D.28.下列图形中阴影部分的面积相等的是( )A.①④ B.③④ C.①② D.②③9.如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为( )A. B. C. D.510.如图,在平面直角坐标系中,动点A从(1,0)出发,向上运动1个单位长度到达点B(1,1),分裂为两个点,分别向左、右运动到点C(0,2)、点D(2,2),此时称动点A完成第一次跳跃,再分别从C、D点出发,每个点重复上边的运动,到达点G(-1,4)、H(1,4)、I(3,4),此时称动点A完成第二次跳跃,依此规律跳跃下去,动点A完成第2023次跳跃时,最左边第一个点的坐标是( )A. B. C. D.第Ⅱ卷(非选择题)二、开动脑筋,耐心填一填!11.清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.0000084米,用科学记数法表示0.0000084为______.12.分解因式:______.13.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是______.14.如图,在四边形ABCD中,E,F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则______.15.如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为______.三、解答题(解答题要求写出必要的计算步骤或证明过程)16.化简求值:,其中17.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有______名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为______,图中m的值为______;(3)学校决定从本次比赛获得“A等级”的学生中间,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.18.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,,,,)19.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?20.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.21.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足的有______个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为,,直角三角形面积为,请判断,,的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知,则当变化时,回答下列问题:(结果可用含m的式子表示)①______;②b与c的关系为______,a与d的关系为______.22.如图,抛物线与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.仔细检查一下,也许你会做的更好,考试成功的秘诀在于把会做的题做对,祝你成功!泗水县2023年中考二模数学参考答案一﹑选择题(每小题3分,共30分) 题号12345678910答案DABCCBCDAA二、填空题(每小题3分,共15分 )11. 12. 13. 5 14. 15. 三、解答题(共55分 )16.(6分)原式= 17.(7分)解:(1)5 (2)72° 40 (3). 18.(7分)解:如图,过点C作CD⊥AB于点D,根据题意可知:AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,∴AD=CD,∴BD=AB﹣AD=7﹣CD,在Rt△BCD中,∵tan∠CBD=,∴0.40,∴CD=2,∴AD=CD=2,BD=7﹣2=5,∴AC=2≈2.83,BC=5.41,∴AC+BC≈2.83+5.41≈8.2(km).答:新建管道的总长度约为8.2km.19.(8分)解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y有最大值∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.20.(8分)解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°, 即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBD是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=.(9分)(1)3(2)S1+S2=S3证明略(3)a2+b2+c2+d2=m2,b﹣c,a+d=m22.(10分)解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x=(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,此时m=1,点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OD=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则或,即或2,即或2,解得:m=1或﹣2(舍去)或或(舍去),故m=1或. 答案仅供参考!!!
相关试卷
这是一份2023年山东省济宁市泗水县中考三模数学试题,共13页。试卷主要包含了开动脑筋,耐心填一填!,解答题等内容,欢迎下载使用。
这是一份2023年山东省济宁市泗水县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省济宁市泗水县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。