- 浙江卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡) 试卷 0 次下载
- 重庆卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡) 试卷 0 次下载
- 广东卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡) 试卷 3 次下载
- 江苏卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡) 试卷 0 次下载
- 江苏卷02(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡) 试卷 0 次下载
安徽卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡)
展开2023年高考数学黑马逆袭卷(安徽专用卷01)
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.已知集合,集合,则( )
A. B. C. D.
2.已知是虚数单位,复数的共轭复数的虚部为( )
A. B. C.4 D.
3.2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中的值为( )
A.24 B.6 C. D.
4.如图,在四棱锥中,已知:平面ABCD,,,,已知Q是四边形ABCD内部一点(包括边界),且二面角的平面角大小为,则面积的取值范围是( )
A. B. C. D.
5.中国空间站(China Space Station)的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设空间站要安排甲、乙等6名航天员开展实验,三舱中每个舱至少一人至多三人,则不同的安排方法有( )
A.450种 B.72种 C.90种 D.360种
6.将函数的图象向右平移个单位长度,再将所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象,若在上恰有2个零点,则的取值范围为( )
A. B. C. D.
7.如果不是等差数列,但若,使得,那么称为“局部等差”数列.已知数列的项数为4,记事件:集合,事件:为“局部等差”数列,则条件概率
A. B. C. D.
8.已知,,,则下列结论中,正确的是( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.
9.2022年11月份,全国工业生产者出厂价格同比下降1.3%,环比上涨0.1%,如图所示是2021年11月到2022年11月全国工业生产者出厂价格涨跌幅折线图.则下列说法正确的是( )
A.2022年1-11月平均,全国工业生产者出厂价格比去年同期上涨约为4.68%
B.2022年1-11月,全国工业生产者出厂价格同比增长率一直减小
C.2022年1-11月,全国工业生产者出厂价格同比增长率超过5%的月份有6个
D.2022年1-11月,全国工业生产者出厂价格环比增长率为负数的月份有4个
10.在正方体中,点P满足,则( )
A.若,则AP与BD所成角为 B.若,则
C.平面 D.
11.已知指数函数的图象经过点,若对使得成立的整数可能是( )
A.5 B.6 C.7 D.8
12.在椭圆中,其所有外切矩形的顶点在一个定圆上,称此圆为该椭圆的蒙日圆.该圆由法国数学家最新发现.若椭圆,则下列说法中正确的有( )
A.椭圆外切矩形面积的最大值为
B.点为蒙日圆上任意一点,点,当最大值时
C.过椭圆的蒙日圆上一点,作椭圆的一条切线,与蒙日圆交于点,若存在,则为定值
D.若椭圆的左右焦点分别为,过椭圆上一点和原点作直线与蒙日圆相交于,且,则
三、填空题:本题共4小题,每小题5分,共20分.
13.已知的展开式中所有项的系数之和为,则展开式中含的项的系数为__________.
14.已知点,,若线段与圆存在公共点,则的取值范围为_________.
15.如图,在中,,且,则面积的最大值________.
16.意大利数学家斐波那契年~年)以兔子繁殖数量为例,引人数列:,该数列从第三项起,每一项都等于前两项之和,即,故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为.设是不等式的正整数解,则的最小值为__________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(10分)
记,为数列的前n项和,已知,.
(1)求,并证明是等差数列;
(2)求.
18.(12分)
在锐角中,角的对边分别为,且,,依次组成等差数列.
(1)求的值;
(2)若,求的取值范围.
19.(12分)已知甲、乙两地区2016年至2022年这七年某产业收入(亿元)的数据如下图所示.
(1)如果从甲、乙两地的这七年收入中各随机抽取一年的收入,求抽得的甲地收入大于乙地收入的概率;
(2)利用统计模型估计该产业2023年乙地收入会比甲地收入多多少亿元.
附:回归系数、回归方程的截距计算公式:,
20.(12分)已知椭圆经过点,.
(1)求椭圆的方程;
(2)为椭圆的右焦点,直线垂直于轴,与椭圆交于点,,直线与轴交于点,若直线与直线交于点,证明:点在椭圆上.
21.(12分)如图,四棱锥中,底面为矩形且垂直于侧面,为的中点,,.
(1)证明:平面;
(2)侧棱上是否存在点E,使得平面与平面夹角的余弦值为,若存在,求的值;若不存在,说明理由.
22.(12分)设函数.
(1)当时,讨论函数的单调性;
(2)当时,判断函数的零点个数,并说明理由.
江苏卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡): 这是一份江苏卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡),文件包含江苏卷01全解全析docx、江苏卷01参考答案docx、江苏卷01考试版A4版docx、江苏卷01答题卡A4版docx、江苏卷01答题卡A3版docx、江苏卷01考试版A3版docx等6份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
广东卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡): 这是一份广东卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡),文件包含广东卷01全解全析docx、广东卷01参考答案docx、广东卷01答题卡A4版docx、广东卷01考试版A4版docx、广东卷01答题卡A3版docx、广东卷01考试版A3版docx等6份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
重庆卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡): 这是一份重庆卷01(高考仿真模拟)-【金榜题名】决战2023年高考数学黑马逆袭卷(含考试版、全解全析、参考答案、答题卡),文件包含重庆卷01全解全析docx、重庆卷01参考答案docx、重庆卷01答题卡A4版docx、重庆卷01考试版A4版docx、重庆卷01答题卡A3版docx、重庆卷01考试版A3版docx等6份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。