六年级上数学教材分析圆_人教新课标
展开这是一份六年级上数学教材分析圆_人教新课标,共8页。
第四单元 圆
一、教学内容
本单元教材主要内容有:认识圆、圆的周长和圆的面积等。
本单元是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,同时,也渗透了曲线图形与直线图形的内在联系。
认识圆 例1 用一般的物体画圆
例2 通过折圆的操作活动认识圆
用圆规画圆
例3 认识圆是轴对称图形
圆的周长 探索圆的周长公式、圆周率
例1 圆的周长的计算
圆的面积 探索圆的面积公式
例1 圆的面积计算
例2 圆形的面积计算
二、教学目标
1.认识圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。
2.理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
三、具体编排
(一)认识圆
认识圆 例1 用一般的物体画圆
例2 通过折圆的操作活动认识圆
用圆规画圆
例3 认识圆是轴对称图形
1.主题图。
编排思想:
主题图呈现了城市广场的生活场景,里面包含了很多圆形的物体,如喷水池、花坛、车轮等等,从而说明圆在生活中随处可见,应用非常广泛。
教学建议:
教学时,可以把主题图作为认识圆的起点来讲授,如可把主题图制成多媒体课件,然后点击凸现其中的圆形物体,让学生利用圆的基本特性(如易滚动、外形美观等)来理解这些物体设计成圆形的道理;也可结合后面圆的周长和面积的计算穿插进行教学,如车轮、花坛的周长,喷水池的面积等,都可以作为后面相关教学内容的素材。
2.例1(用一般物体画圆)。
编排思想:
(1)让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。
(2)教材共呈现了用3个学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为用后面教学圆规画圆做了铺垫。
教学建议:
教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。
3.例2(认识圆和用圆规画圆)。
编排思想:
(1)主要认识圆的各部分名称及特征。
(2)首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。
(3)认识半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。
(4)通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的 。
(5)用圆规画圆,先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。
教学建议:
(1)应放手让学生活动,通过折、画、量等方式来寻找规律。
(2)最后,教师应在学生探究和交流的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。
(3)教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。
(4)在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。
4.做一做。
(1)第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。
(2)第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。
5.例3(认识圆是轴对称图形)。
编排思想:
在结合前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。
教学建议:
(1)让学生回顾以前学过的对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都是对称图形,都有对称轴,这些图形都是轴对称图形。
(2)引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。
6.练习十四。
(1)第3题,使学生知道两端都在圆上的线段,直径是最长的一条。
(2)第4题,这两种方法都是利用第3题的结论,通过移动尺子或是用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。
(二)圆的周长
圆的周长 探索圆的周长公式、圆周率
例1 圆的周长的计算
1.圆的周长。
编排思想:
(1)从实际情境引入,帮助学生理解圆的周长的概念。
(2)引出“如何求圆的周长”的问题。放手让学生测量圆的周长,引出探索圆的周长的一般性规律(公式)的必要性。
(3)教材为学生直接指明了研究的方向,即通过测量不同大小的圆的周长和直径,计算出周长和直径的比值,发现规律。
(4)教材通过直接介绍的方式说明一个圆的周长与直径的比值是一个固定的数,通常叫做圆周率,用字母“π”来表示。并给出圆的周长的计算公式:C=πd或C=2πr。
(5)教材通过“你知道吗”介绍了圆周率的一些历史材料,特别指出了我国古代数学家祖冲之在这方面的伟大成就。
教学建议:
(1)教学圆的周长之前,可以先复习一下一般封闭图形和长方形、正方形周长的计算。
(2)教学圆的周长概念时,教师可以从教材上的实际情境引入,让学生说一说绕圆形花坛骑一圈形成的轨迹是什么图形,这一圈的长度指的是什么。再说明,如果把这一圈近似地看成圆形花坛的边界,要求绕花坛骑一圈大约是多少米,也就是求圆形花坛的周长。
(3)在测量圆的周长时,教师可以鼓励学生用不同的方式进行测量。学生用测量的方法量出了这些圆的周长以后,教师可以进一步提出问题:“要是有一个很大的圆,怎么测量它的周长呢?”引导学生去寻求更为一般化的方法。
(4)学生在前面的测量过程中已经发现,大小不同的圆的周长是不同的,而圆的大小是由直径(或半径)唯一决定的,因此,圆的周长与直径(或半径)之间一定存在着某种关系。但如果完全放手,让学生自己去探究这种关系,有一定的困难。因此,教师可以直接告诉学生去计算不同圆的周长和直径的比值,并把结果填在书上的表中。然后让学生观察、比较实验的结果,引导学生得出:圆的周长是直径的三倍多一些(或3.14左右的一个数)。教师进一步指出,由于测量时存在一定的误差,也许不同的圆计算出的 的值不完全相同,但实际上,这个比值是一个固定不变的数,通常叫做圆周率,用希腊字母“π”来表示。教师要说明π是一个无限不循环小数。提到圆周率“π”是无限不循环小数时,也可把学到的小数归纳如下:
(5)结合“你知道吗?”向学生介绍这方面的情况,进行爱国主义教育。
(6)可以引导学生自行归纳、总结圆的周长的计算公式。
2.例1(圆的周长计算)。
编排思想:
(1)教材结合主题图进行圆的周长计算的教学。
(2)既计算了圆形花坛的周长,又计算了自行车轮子的周长。
(3)在解决“绕花坛一周车轮大约转动多少周”这个问题时,体现了解决问题策略的多样化,培养学生具体问题具体分析的意识和能力。
教学建议:
(1)可让学生自主完成,教师说明以下两点:①不必写出公式,只要直接计算就行;②π取两位小数3.14,已作为一般数值处理,计算结果不必再用“≈”表示。但在判断“周长是直径的多少倍”时仍应说“π倍”而不是“3.14倍”。
(2)在解决“绕花坛一周车轮大约转动多少周”的问题时,方法可以多样。在此基础上,可以引导学生发现:花坛周长与车轮周长的比值就是花坛直径与车轮直径的比值。
(3)在计算圆的周长时,要根据“圆的周长是直径的3倍多一些”,鼓励学生通过估算,来检验计算的结果是否合理。
3.练习十五。
(1)第4题,可以让学生想:30分钟、45分钟分别是60分钟的几分之几,就表示针尖所走的路程是一周的几分之几。
(2)第5题,在计算要装多少根木桩时,要联系以前所学的“植树问题”使学生明白,在一个封闭的圆上分段,分隔点的数目与分成的段数是相等的。
(3)第10*题,可引导学生思考:为什么大半圆的长度与两个小半圆的长度和相等?
使学生发现:由于圆的周长等于直径乘π,当比较圆的周长时,可只考虑直径之间的关系。因为大圆的直径等于两个小圆的直径之和,所以有上述结论。
(三)圆的面积
圆的面积 探索圆的面积公式
例1 圆的面积计算
例2 圆环的面积计算
1.探索圆的面积公式。
编排思想:
(1)创设在圆形草坪上铺草皮的实际情境,一方面使学生了解圆的面积的含义,另一方面,使学生体会在实际生活中计算圆面积的必要性。
(2)直接提出问题“怎样计算一个圆的面积呢?”引导学生思考能否把圆转化成已学的图形来计算面积。教材采用实验的方法,指导学生把圆分割成若干等份(偶数份,如16等份、32等份),再拼成一个近似的长方形。使学生看到分的份数越多,拼得的图形就越接近于长方形。
(3)引导学生对长方形的长与宽跟原来的圆的周长、半径之间的关系进行比较,并自行完成圆面积计算公式的推导过程。这里涉及了数学中的逐步逼近的方法,就是采取某种方法,使一个近似的图形逐步逼近精确的图形。
教学建议:
(1)在出示教材中铺草皮的实际情境之后,可以让学生再举一些实例,说明在实际生活中计算圆面积的必要性。
(2)让学生预先准备一些圆形学具。在教师指导下,让学生按照教材上的图,将圆16等分,剪开后想办法拼成一个近似的长方形。再让学生通过小组合作的方式,自由地分一分、剪一剪、拼一拼。
(3)把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。
(4)如果有条件,教师可以利用多媒体课件把圆不断细分,使学生看到,如果分的份数越多,拼成的图形就越接近长方形。
(5)通过引导学生分析、比较长方形的长与宽跟原来圆的周长与半径之间的关系,自行完成圆的面积计算公式的推导。
2.例1(圆的面积计算)。
编排思想:
与圆的周长编排类似,本例也是结合主题图,计算圆开花坛的面积。
教学建议:
(1)教学此例前,可以安排一些求一个数的平方的口算练习。例如,可以补充一些10以内数、整十数、几十五的平方练习,如352是35×35=1225,而不是35×2=70。掌握常用的平方计算,对提高计算圆面积的速度有帮助。
(2)此例可以充分发挥学生主动性,让学生自行完成。进行订正时,要向学生指出,要先算平方,后算乘法。
3.例2(圆环面积的计算)。
编排思想:
(1)创设求光盘圆形部分面积的情境,使学生理解求圆环的面积是用外圆面积减去内圆面积。
(2)教材给出了两种算法。实际上通过乘法分配律,学生能够发现这两种算法的一致性。
教学建议:
(1)教学时,教师可以准备实物或教具,通过演示,使学生明确:求圆环的面积就是用外圆面积减去内圆面积。
(2)放手让学生独立计算,最后让学生说一说两种解法有什么不同,两者之间可以通过什么运算定律互相转化,引导学生在计算圆环的面积时,尽量使用简便算法,可以减少计算量。
相关教案
这是一份六年级上数学评课稿位置_人教新课标,共35页。
这是一份六年级上数学评课稿利息_人教新课标,共35页。教案主要包含了准确定位,激发探究欲望,不足之处等内容,欢迎下载使用。
这是一份六年级上数学教学设计1圆的面积_人教新课标,共35页。教案主要包含了教材分析,学生分析,教学目标,教学环境,信息技术应用思路200字,教学流程设计,教学特色200字左右等内容,欢迎下载使用。